期刊文献+

具有奇异位置的多体系统动力学方程的改进算法 被引量:4

A MODIFIED NUMERICAL METHOD FOR DYNAMICAL EQUATIONS OF THE MULTIBODY SYSTEMS WITH SINGULARITY POSITION
下载PDF
导出
摘要 多体系统进行数值仿真时,很多选择了微分代数混合方程作为多体系统动力学数学模型.本文在现有的约束稳定化理论基础上,提出了针对具有奇异位置的多体系统动力学方程的改进算法.算法通过修正速度违约和控制稳定项,讨论了具有奇异位置的微分代数混合方程的数值仿真问题并给出了稳定项中相关系数的建议值,从而有效克服了求解混合方程时因为构型奇异给计算造成的困难.算例分别采用改进算法与ADAMS软件进行仿真,计算结果的比较表明了改进算法的有效性.本文给出的基于能量守恒的能量差曲线也证明了改进算法的有效性. The differential-algebraic equations are often chosen as the mathematical models of the dynamics of multibody systems in order to achieve the numerical emulation for the multibody systems. Based on the existing constraint violation stabilization method, a modified numerical method for the equations with singularity positions is proposed in the present paper. By correcting the violation of the velocity and controlling the stability term in the modified method, the differential-algebraic equations with singularity positions are .solved, and the values of the coefficients in the stability term are suggested. Thus, the numerical difficulty, due to the singularity of the multibody systems,is effectively eliminated. The contrast between the numerical results of the example using the modified method and the ADAMS soft demonstrates the effectiveness of the proposed modified method. The balance based on the law of conservation of energy also proves the effectiveness of the method.
出处 《动力学与控制学报》 2006年第2期109-113,共5页 Journal of Dynamics and Control
基金 国家自然科学基金资助项目(10472017)~~
关键词 奇异 多体系统动力学 微分-代数混合方程 singularity, dynamics of multibody systems, differential-algebraic equations
  • 相关文献

参考文献3

  • 1[4]Baumgarte J.Stabilization of constraints and integrals of motion in dynamic systems.Computer Methods in Applied Mechanics and Engineering,1972,1:1~16 被引量:1
  • 2[5]Baumgarte J.A new method of stabilization for holonomic constraints.Journal of Applied Mechanics,1983,50:869~870 被引量:1
  • 3[6]Parviz E.Nikravesh.Some methods for dynamic analysis of constrained mechanical systems:A survey.In:Edward J.Haug ed.Computer aided Analysis and Optimization of Mechanical system Dynamics.Berlin:Springer-verlag,1984,351~368 被引量:1

同被引文献29

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部