期刊文献+

OPERATORS ON CORNER MANIFOLDS WITH EXIT TO INFINITY

OPERATORS ON CORNER MANIFOLDS WITH EXIT TO INFINITY
原文传递
导出
摘要 We study (pseudo-)differential operators on a manifold with edge Z, locally modelled on a wedge with model cone that has itself a base manifold W with smooth edge Y. The typical operators A are corner degenerate in a specific way. They are described Cmodulo 'lower order terms') by a principal symbolic hierarchy σ(A) = (σψ (A), σ∧ CA), σ∧ (A)), where σψ is the interior symbol and σ∧(A) (y, η), (y, η) ∈ T*Y/0, the Coperator-valued) edge symbol of 'first generation', cf. [1]. The novelty here is the edge symbol σ∧ of 'second generation', parametrised by (z, ζ) ∈ T*Z / 0, acting on weighted Sobolev spaces on the infinite cone with base W. Since such a cone has edges with exit to infinity, the calculus has the problem to understand the behaviour of operators on a manifold of that kind. We show the continuity of corner-degenerate operators in weighted edge Sobolev spaces, and we investigate the ellipticity of edge symbols of second generation. Starting from parameter-dependent elliptic families of edge operators of first generation, we obtain the Fredholm property of higher edge symbols on the corresponding singular infinite model cone.
出处 《Journal of Partial Differential Equations》 2006年第2期147-192,共46页 偏微分方程(英文版)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部