期刊文献+

基于Roe格式的可压与不可压流的统一计算方法 被引量:7

Unified Computation of Flow With Compressible and Incompressible Fluid Based on Roe's Scheme
下载PDF
导出
摘要 以Navier_Stokes方程为基础,基于有限体积的时间推进的预处理技术,提出了一个可以用来求解可压与不可压流场的统一的计算方法.原始变量选用压力、速度与温度,通过矩阵变换与重构,使得对流项系数矩阵在可压与不可压条件下都不会奇异,将可压与不可压流场的计算方法统一起来.采用Roe格式计算对流通量,采用中心差分格式计算扩散通量.算例表明,该方法可以进行高Mach数、中等Mach数、低Mach数及不可压流场的计算.由于采用了Roe格式,该方法还可以捕获不连续流场的间断面. A unified numerical scheme for the solutions of the compressible and incompressible Navier-Stokes equations is investigated based on a time-derivative preconditioning algorithm. The primitive variables were pressure, velocities and temperature. The time integration scheme was used in co, unction with a finite volume disctetization. The precomditioning was coupled with a high order implicit upwind scheme based on the definition of a Roe' s type matrix. Computational capabilities are demonstrated through computations of high Mach number, middle Mach number, very low Mach number, and incompressible flow. It has also been demonstrated that the discontinuous surface in flow field can be captured for the implementation Roe' s scheme.
作者 黄典贵
出处 《应用数学和力学》 CSCD 北大核心 2006年第6期669-674,共6页 Applied Mathematics and Mechanics
基金 国家自然科学基金资助项目(50576049) 国防基础科研项目(A4020060263) 上海市重点学科建设项目(Y0103)
关键词 流场 预处理 可压 不可压 Roe格式 flow field preconditioning compressible fluid incompressible fluid
  • 相关文献

参考文献10

  • 1Turkel E. Preconditioned method for solving the incompressible and low speed compressible equations[J]. Journal of Computational Physics, 1987,72(2) :277-298. 被引量:1
  • 2Guillard Herve, Viozat Cecile. On the behaviour of upwind schemes in the low Mach number limit[J]. Computer & Fluids, 1999,28(1) :63-86. 被引量:1
  • 3Storti M, Nigro N, Idelsohn S. Steady state incompressible flows using explicit schemes with an optimal local preconditioning[ J]. Computer Methods in Applied Mechanics and Engineering, 1995,124(3) :231-252. 被引量:1
  • 4Weiss Jonathan M, Smith Wayne A. Preconditioning applied to variable and constant density flow[J]. AIAA J, 1995,33( 11 ) :2050-2057. 被引量:1
  • 5Merkle Charles L, Sullivan Jennifer Y, Buelow Philip E O, et al. Computation of flow with arbitrary equations of state[J]. AIAA J, 1998,36(4):515-521. 被引量:1
  • 6Choi Y H, Merkle C L. The application of preconditioning in viscous flows[ J]. Journal of Computational Physics, 1993,105(2) :207-223. 被引量:1
  • 7Edwards Jack R, Franklin Randall K, Liou Meng-Sing. Low-diffusion flux-splitting methods for real fluid flows with phase transitions[ J]. AIAA J, 2000,38(9) : 1624-1633. 被引量:1
  • 8Roe P L. Approximate Riemann solvers, parameter vector, and difference schemes[ J]. Journal of Computational Physics, 1981,43(2) :357-372. 被引量:1
  • 9Rouse H, McNown J S. Cavitation and Pressure Distribution, Head Forms at Zero Angle of Yaw[ M]. Studies in Engineering Bulletin 32. Iowa: State University of Iowa, 1948. 被引量:1
  • 10Bogar T, Sajben M, Kroutil J. Characteristic frequencies of transonic diffuser flow oscillations[ J].AIAA J, 1983,21(9) : 1232-1240. 被引量:1

同被引文献32

引证文献7

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部