期刊文献+

人工神经网络预测屈服强度 被引量:5

Application of Artificial Networks in Prediction of Yield Strength
下载PDF
导出
摘要 在实验数据的基础上,采用附加动量项和变步长的方法,对人工神经网络的BP算法进行了训练。利用训练后所得到的模型,对屈服强度进行了分析和预测。计算表明,网络预测值与实测值之间具有很高的相关性和精确度,为屈服强度提供了一定的理论辅助手段。 Based on experimental data, the back-propagating algorithm in artificial neural networks (ANNs) was trained by appending momentum and changing steps. According to the trained model, the critical points for yield strength were analyzed and predicted. The results show that the prediction precision and the pertinency between the predicted ANNs and measured values are considerably high. A Theoretical method for prediction martensite start temperature is given,
作者 侯哲哲 张筠
出处 《热加工工艺》 CSCD 北大核心 2006年第10期58-59,共2页 Hot Working Technology
关键词 屈服强度 神经网络 BP算法 yield strength neural networks back-propagating
  • 相关文献

参考文献4

  • 1束德林.金属力学性能[M].北京:冶金工业出版社,1994.. 被引量:13
  • 2Syn C K,Lesuer D R,Sherby O D.Influence of microstructure on tensile properties of spheroidized ultrahigh-carbon(1.8Pct C)Steel[J].Metallurgical and materials translations,1994,25A:1481-1493. 被引量:1
  • 3Liu Z Y,Wang W D,Gao W.Prediction of the mechanical Properties of hot-rolled C-Mn steels using artificial neural networks[J].Journal of Mechanical Processing Technology,1996,57:332-336. 被引量:1
  • 4Gavard W G,Wolk P J van der,Weijer A P de.Prediction of Jominy hardness profiles of steels using artifical nerrural network[J].Mater.Eng.Perfor,1996,5(1):57-63. 被引量:1

共引文献12

同被引文献27

引证文献5

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部