摘要
采用分数导数Kelvin固体模型建立粘弹性阻尼器在外力作用下的分数阶动力学有限元方程,并利用New-mark数值积分法得到数值解。结果表明,Zhang and Shimizu分数导数数值积分法能够很好地满足精度、收敛性和稳定性等要求,通过减小时间步长能够有效减小因引入Newmark而导致的周期误差,从而提高计算精度。
A dynamic FE equation of the viscoelastic damper under applied stress was built based on fractional derivative Kelvin solid model,and the numerical solution was obtained by Newmark numerical integration method. The results showed that ZHANG and Shimizu's fractional derivative numerical integration method met the requirements for accuracy, convergence and constance, and decreased the periodic error from the introduction of Newmark by reducing the time interval resulting in more accuracy of calculation.
出处
《橡胶工业》
CAS
北大核心
2006年第5期271-275,共5页
China Rubber Industry