期刊文献+

在复杂大气条件下的飞机自动着陆控制器设计与仿真 被引量:7

Controller Design and Simulation of Aircraft's Automatic Landing Under Complex Atmospheric Conditions
下载PDF
导出
摘要 对飞机整个自动着陆过程的控制进行了设计,主要采用逆系统方法设计控制律,并用神经网络对控制律进行了鲁棒补偿,神经网络的学习规则为带有死区的关于神经网络灵敏度的线性函数。对于在自动着陆过程中可能遇到的紊流和风切变等几种典型大气情况进行了分析,并将所设计的着陆控制律在上述复杂大气条件下进行了仿真验证。仿真结果表明,所设计的自动着陆系统对复杂大气条件具有鲁棒性,着陆过程中实际飞行高度与期望飞行高度的误差在合理的范围之内。 The control of aircraft's automatic approach and landing was designed, mainly using inverse system method, compensated by neural network for robustness. The learning rule of neural network was a linear function of the neural network's sensitivity with dead zone. Some typical atmospheric conditions, such as turbulence and windshear, were analyzed, which might occur in landing. Some simulations were made to verify the control law under above-mentioned complex atmospheric conditions. The simulation results show that the automatic landing system has good robustness to complex atmospheric conditions, and the error between the real flight altitude in landing and reference flight altitude is in a reasonable range.
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2006年第5期1286-1288,共3页 Journal of System Simulation
关键词 逆系统 神经网络 自动着陆 大气紊流 风切变 inverse system neural networks automatic landing atmospheric turbulence windshear
  • 相关文献

参考文献6

  • 1Iiguni Y,Akiyoshi H,Adachi N.An intelligent landing system based on a human skill model[J].IEEE Transactions on Aerospace and Electronic Systems(S0018-9251),1998,34(3):877-882. 被引量:1
  • 2Li Yan,Sundararajan N,Saratchandran P,et al.Robust neuro-controller design for aircraft auto-landing[J].IEEE Transactions on Aerospace and Electronic Systems(S0018-9251),2004,40(1):158-167. 被引量:1
  • 3Yan Li,Zhifeng Wang,Sundararajan N,et al.Fault tolerant neuro-controller design for aircraft auto-landing[C]// In:Proceedings of the 35th Southeastern Symposium on System Theory.2003:172-175. 被引量:1
  • 4Jun Che,Degang Chen.Automatic landing control using control and stable inversion[C]// In:Proceedings of the 40th IEEE Conference on Decision and Control.2001:241-246. 被引量:1
  • 5Jih-Gau Juang,Hao-Hsiang Chang,Kai Chung Cheng.Intelligent landing control using linearized inverse aircraft model[C]// In:Proceedings of the 2002 American Control Conference.2002:3269-3274. 被引量:1
  • 6邹新生,李春文.飞机自动着陆的一种非线性鲁棒控制器设计[J].电光与控制,2005,12(6):20-24. 被引量:2

二级参考文献13

  • 1JUANG J G , CHANG H H, CHENG K C. Intelligent landing control using linearized inverse aircraft model[A].Proceedings of the 2002 American Control Conference[C]. 2002: 3269-3274. 被引量:1
  • 2LI Y, WANG Z F, SUNDARARAJAN N, et al. Neuro-Controllers for Aircraft Auto-Landing under Severe Wind Conditions[A]. Proceedings of the American Control Conference[C]. 2003: 1296-1301. 被引量:1
  • 3HOJJAT I, MEHRDAD P, NASSER S. Optimal neuro-controller in longitudinal autolanding of a commercial jet transport[A]. Proceedings of 2003 IEEE Conference on Control Applications[C], 2003: 492-497. 被引量:1
  • 4LI Y, SUNDARARAJAN N, SARATCHANDRAN P, et al. Robust neuro-H infinity controller design for aircraft auto-landing[J]. IEEE Transactions on Aerospace and Electronic Systems, 2004, 40(1): 158-167 被引量:1
  • 5JUANG J G, CHENG K C. Wind disturbances encountered during controlled landings using neural network approaches[A]. Proceedings of the 2001 IEEE International Conference on Control Applications CCA '01[C], 2001: 835-840. 被引量:1
  • 6NIEWOEHNER R J. KAMINER, I I. Design of an autoland controller for an F-14 aircraft using H/sub infinity / synthesis[J]. Journal of Guidance, Control, and Dynamics, 1996, 19(3): 656-663. 被引量:1
  • 7BALAKRISHNAN S N, BIEGA V. Adaptive-critic-based neural networks for aircraft optimal control[J]. Journal of Guidance, Control, and Dynamics,1996, 19(4): 893-898. 被引量:1
  • 8SHYH-PYNG S, AGARWAL R K. Design of automatic landing systems using mixed H/sub 2//H/sub infinity / control[J].Journal of Guidance, Control, and Dynamics, 1999, 22(1): 103-114. 被引量:1
  • 9CALISE A J , RYSDYK R T.Nonlinear adaptive flight control using neural networks[J]. IEEE Control Systems Magazine, 1998, 18(6): 14-25. 被引量:1
  • 10CHEN F C,LIU C C. Adaptively controlling nonlinear continuous-time systems using multilayer neural networks[J]. IEEE Transactions on Automatic Control, 1994, 39(6): 1306-1310. 被引量:1

共引文献1

同被引文献69

引证文献7

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部