期刊文献+

失谐周期压电复合材料结构中的波动局部化研究 被引量:3

Study on Wave Localization in Disordered Periodic Piezoelectric Composite Structures
下载PDF
导出
摘要 考虑力电耦合效应的影响,研究了层状失谐周期压电复合材料结构中的波动局部化问题。根据界面上力电连续条件,推导了结构中相邻单胞间的传递矩阵。以力场和电场变量为状态向量,给出了结构中局部化因子的表达式。作为算例,计算了结构中的波动局部化因子。计算结果表明,压电陶瓷的压电效应对周期压电复合材料的波动局部化特性有显著影响,压电常数越大局部化因子值越大,结构的局部化程度越强;结构的失谐度越大,频率通带区间内的局部化因子值越大,局部化程度越强。分析结果对于周期压电复合材料结构的优化设计和振动控制具有理论参考价值。 By considering mechanical and electrical coupling characteristics of piezoelectric composite materials, the wave localization in disordered periodic layered piezoelectric composite structures is studied. According to the mechanical and electrical continuity conditions, the transfer matrix between two consecutive unit cells is obtained. The expression for calculating the localization factors in disordered periodic structures is presented by means of the variables in mechanical and electrical fields. As an example, numerical results of localization factors are presented. It can be seen from the results that the piezo-effect of the piezoelectric ceramics has significant effects on the characteristics of wave localization in periodic piezoelectric composites. The larger the piezoelectric constant of the piezoelectric ceramics and the degree of disorder of the structure are, the larger the localization factor or the stronger the wave localization is. The conclusions have theoretical significance for optimization design and vibration control in periodic piezoelectric composite structures.
出处 《航空学报》 EI CAS CSCD 北大核心 2006年第1期38-43,共6页 Acta Aeronautica et Astronautica Sinica
基金 国家杰出青年基金(10025211) 中国博士后科学基金(2004035269)资助项目
关键词 压电复合材料 失谐周期结构 力电耦合 波动局部化 传递矩阵 piezoelectric composite disordered periodic structure mechanical-electrical coupling wave localization transfer matrix
  • 相关文献

参考文献10

二级参考文献30

  • 1李凤明,汪越胜.压电周期结构振动主动控制研究[J].振动工程学报,2004,17(z2):828-830. 被引量:18
  • 2刘华,黄田,曾子平.一类非线性振动自适应控制的神经网络方法[J].振动工程学报,1995,8(1):16-22. 被引量:3
  • 3李德堡 陆秋海.实验模态分析及其应用[M].北京:科学出版社,2001.146—170. 被引量:2
  • 4[3]Zinchuk L P, Podlipenets A N. Dispersion equations for Rayleigh waves in a piezoelectric periodically layered structure. Journal of Mathematical Sciences, 2001; 103(3): 398-403 被引量:1
  • 5[4]Baz A. Active control of periodic structures. ASME,Journal of Vibration and Acoustics, 2001; 123: 472-479 被引量:1
  • 6[5]Thorp O, Ruzzene M, Baz A. Attenuation and localization of wave propagation in rods with periodic shunted piezoelectric patches. Smart Materials and Structures,2001; 10:979-989 被引量:1
  • 7[7]Johansson G, Niklasson A J. Approximate dynamic boundary conditions for a thin piezoelectric layer. International Journal of Solids and Structures, 2003; 40:3 477-3 492 被引量:1
  • 8[8]Qian Z H, Jin F, Wang Z K, et al. Dispersion relations for SH-wave propagation in periodic piezoelectric composite layered structures. International Journal of Engineering Science, 2004; 42:673-689 被引量:1
  • 9Wang Q, Wang C M. A controllability index for optimal design of piezoelectric actuators in vibration control of beam structures[J]. Journal of Sound and Vibration, 2001, 242(3): 507-518. 被引量:1
  • 10Etienne B. Structural dynamic toolbox[M]. Paris France:Scientific Software, 2002. 被引量:1

共引文献168

同被引文献54

引证文献3

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部