期刊文献+

基于邻近类别分类的邮件过滤系统设计 被引量:1

Design of Email Filtering System Based on Approximate Category Classification
原文传递
导出
摘要 论文提出了一种基于邻近类别分类的邮件过滤系统模型,并介绍了系统涉及到的文本特征选择、贝叶斯分类算法等关键技术,最后给出了评价方法与实验结果。结果表明,该方法能够显著地提高系统对于垃圾邮件的查准率。 This paper proposes one model of Email Filtering System Based on Approximate Category Classification. In addition, some related key technologies, such as text feature selection and naive Bayes algorithm are introduced. Finally, this paper provides an assessment method and the results of experiments. It shows that this method can notably enhance the system precision toward mail spam.
出处 《信息安全与通信保密》 2006年第5期81-83,共3页 Information Security and Communications Privacy
基金 国家863高技术研究发展计划项目资助(编号:2003AA142160)
关键词 邻近类别分类 邮件过滤 特征选择 approximate category classification spam filtering feature selection
  • 相关文献

参考文献4

二级参考文献14

  • 1Jonathan B Postel.SIMPLE MAIL TRANSFER PROTOCOL[S].RFC821 IETF, 1982. 被引量:1
  • 2David H Crocker.STANDARD FOR THE FORMAT OF ARPA INTERNET TEXT MESSAGES[S].RFC822 IETF, 1982. 被引量:1
  • 3M Mohri.ON SOME APPLICATIONS OF FINITE-STATE AUTOMATA THEORY TO NATURAL LANGUAGE PROCESSING[J].Natural Language Engineering, 1996. 被引量:1
  • 4Belkin N J, Croft W B. Information filtering and information retrieval: two sides of the same coin? [J]. Communications of the ACM, 1992, 35(12):29-37. 被引量:1
  • 5Waldman M, Rubin A, Cranor L. Publius: a robust, tamper-evident, censorship-resistant web publishing system[A]. Proc of the 9th USENIX Security Symposium[C]. Denver, USA: [s.n.], 2000. 59-72. 被引量:1
  • 6Mladenic D. Text-learning and related intelligent agents: a survey[J]. IEEE Intelligent Systems, 1999, 14(4) 44-54. 被引量:1
  • 7Yang Y. Expert network: effective and efficient learning from human decisions in text categorization and retrieval[A]. In 17th Ann Int ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR'94)[C]. CA USA: [s.n.], 1994. 13-22. 被引量:1
  • 8Cheeseman P, Kelly J, Self M, et al. Autoclass: a bayesian classification system[A]. Proc Fifth Int Conf on Machine Learning[C]. San Mateo, CaJifornia: Morgan Kaufmann, 1988. 54-64. 被引量:1
  • 9Apte C, Damerau F, Weiss S. Text mining with decision rules and decision trees[A]. Proceedings of the Conference on Automated Learning and Discovery[C]. CMU, USA: [s.n.], 1998. 62-68. 被引量:1
  • 10Wiener E, Pedersen J O, Weigend A S. A neural network approach to topic spotting[A]. Proceedings of the Fourth Annual Symposium on Document Analysis and Information Retrieval (SDAIR'95)[C]. Las Vegas, USA: ISRI, Univ of Nevada, 1995. 58-62. 被引量:1

共引文献22

同被引文献4

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部