期刊文献+

删失下的指数分布的贝叶斯估计(英文) 被引量:2

Bayes Estimator for the Exponential Distribution under Censorship
下载PDF
导出
摘要 本文分别在Ⅱ型删失和随机删失下,表明了共轭先验下的指数分布的刻度参数的贝叶斯估计为具有如下形式的收缩估计(?)_(BE)=a■+bEθ,此处■为依赖样本θ的一个无偏估计且Eθ表示先验分布的期望。当采用平方损失函数时,a+b=1;如果用加权平方损失函数,则a+b<1。 Under the type Ⅱ censorship and random censorship, respectively, we show in this paper that the Bayes estimator of the exponential scale parameter with conjugate prior can be shrinkage estimation with the form θ^BE = αθ^ +b bEθ, where θ^ is an unbiased estimator depending on samples and Eθ denotes the expectation of the prior distribution. When the squared loss function is adopted, α + b = 1; if we use the weighted square loss filnction, then α+b〈 1.
作者 王立春
出处 《工程数学学报》 CSCD 北大核心 2006年第3期553-558,共6页 Chinese Journal of Engineering Mathematics
基金 The National Natural Science Foundation of China(10271001)
关键词 贝叶斯估计 收缩估计 损失函数 共轭先验 Bayes estimation shrinkage estimation loss function conjugate prior
  • 相关文献

参考文献3

  • 1Pandey B N.Shrinkage estimation of the exponential scale parameter[J].IEEE Transactions on Reliability,1983,2:203-205 被引量:1
  • 2Shah M C,Parmar R.Modified shrunken technique for estimation of the exponential scale parameter[J].Microelectron Reliab,1988,28:19-21 被引量:1
  • 3Rekab K.Modified shrinkage estimates in the exponential family case[J].Stochastic Analysis and Applications,1994,4:493-498 被引量:1

同被引文献16

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部