期刊文献+

一种求解约束优化问题的演化规划算法 被引量:7

An Evolutionary Programming to Solve Constrained Optimization Problems
下载PDF
导出
摘要 提出了一种新的求解约束优化问题的演化算法——基于混合策略求解约束优化问题的演化规划算法(CMSEP).借鉴了Mezura-Montes的算法中直接比较的约束处理方法,为求解位于边界附近的全局最优解采用多样性保护机制,允许一定比例最好不可行解进入下一代种群,混合策略变异机制用于指导算法快速搜索过程.标准测试函数的实验结果验证了算法的通用性和有效性. A mixed strategies evolutionary programming to solve constrained optimization problems is presented in this paper. The approach does not require the use of a penalty function. Instead, it uses a diversity conservation mechanism based on allowing infeasible solutions to remain in the population. A mixed mutation strategy and feasibility-based comparison mechanism is used to guide the process fast toward the feasible region of the search space. This new evolutionary programming has been tested on 13 benchmark functions. The results obtained show that the new approach is a general and effective method.
出处 《计算机研究与发展》 EI CSCD 北大核心 2006年第5期841-850,共10页 Journal of Computer Research and Development
基金 国家自然科学基金项目(60443003) 北京交通大学科技基金项目(2003SZ003)~~
关键词 约束优化 混合策略 多样性保护机制 演化规划 constrained optimization mixed strategy diversity conservation mechanism evolutionary programming
  • 相关文献

参考文献15

  • 1Z.Michalewicz,M.Schoenauer.Evolutionary algorithms for constraint parameter optimization problems.Evolutionary Computation,1996,4(1):1~32 被引量:1
  • 2R.Le Riche,C.K.Lenoir,R.T.Haftka.A segregated genetic algorithm for constrained structural optimization.In:Proc.6th Int'l Conf.Genetic Algorithms.San Francisco:Morgan Kaufmann,1995 被引量:1
  • 3D.Powell,M.M.Skolnick.Using genetic algorithms in engineering design optimization with nonlinear constraints.The 5th Int'l Conf.Genetic Algorithms (ICGA-93),SanMateo,CA,1993 被引量:1
  • 4K.Deb,S.Agrawal.A niched-penalty approach for constraint handling in genetic algorithms.The ICANNGA-99,Portoroz,Slovenia,1999 被引量:1
  • 5周育人,李元香,王勇,康立山.Pareto强度值演化算法求解约束优化问题[J].软件学报,2003,14(7):1243-1249. 被引量:56
  • 6Haralambos Sarimveis.A line up evolutionary algorithm for solving nonlinear constrained optimization problems.Computers and Operations Research,2005,32(6):1499~1514 被引量:1
  • 7Efrén Mezura-Montes,A.Carlos.Coello Coello.A simple multimembered evolution strategy to solve constrained optimization problems.IEEE Trans.Evolutionary Computation,2005,9(1):1~17 被引量:1
  • 8Xin Yao,Yong Liu,Guangming Lin.Evolutionary programming made faster.IEEE Trans.Evolutionary Computation,1999,3(2):82~102 被引量:1
  • 9Masao Iwamatsu.Generalized evolutionary programming with Lévy-type mutation.Computer Physics Communications,2002,147(8):729~732 被引量:1
  • 10C-Y.Lee,X.Yao.Evolutionary programming usingmutations based on the levy probability distribution.IEEE Trans.Evolutionary Computation,2004,8(1):1 ~ 13 被引量:1

二级参考文献11

  • 1Michalewicz Z, Schoenauer M. Evolutionary algorithms for constrained parameter optimization problems. Evolutionary Computation, 1996,4(1):1~32. 被引量:1
  • 2Michalewicz Z. Genetic algorithms, Numerical optimization and constraints. In: Esheiman LJ, ed. Proceedings of the 6th International Conference on Genetic Algorithms. San Mateo: Morgan Kanfmann Publishers, 1995 151~158. 被引量:1
  • 3Deb K. An efficient constraint handling method for genetic algorithms. Computer Methods in Applied Mechanics and Engineering,2000,186(2--4):311 ~338. 被引量:1
  • 4Runarsson TP, Yao X. Stochastic ranking for constrained evolutionary optimization. IEEE Transaclons on Evolutionary Computation, 2000,4(3):284-294. 被引量:1
  • 5Zitzler E, Thiele L. Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach. IEEE Transactions on Evolutionary Computation, 1999,3(4):257~271. 被引量:1
  • 6Beyer H-G, Deb K. On self-adaptive features in real-parameter evolutionary algorithms. IEEE Transactions on Evolutionary Computation, 2001,5(3):250--270. 被引量:1
  • 7Ono I, Kita H, Kobayashi S. A robust real-coded genetic algorithm using unimodal normal distribution crossover augmented by uniform crossover: effects of self adaptation of crossover probabilities. In: Banzhaf W, Daida J, Eiben E, eds. GECCO'99:Proceedings of the Genetic and Evolutionary Computation Conference. San Mateo: Morgan Kaufmann Publishers, 1999. 496~503. 被引量:1
  • 8Tsutsui S, Yamamura M, Higuchi T. Multi-Parent recombination with simplex crossover in real coded genetic algorithms. In:Banzhaf W, Daida J, Eiben E, eds. GECCO'99: Proceedings of the Genetic and Evolutionary Computation Conference. San Mateo:Morgan Kaufmann Publishers, 1999. 657---664. 被引量:1
  • 9Kita H. A comparison study of self-adaptation in evolution strategies and real-coded genetic algorithms. Evolutionary Computation,2001,9(2):223~241. 被引量:1
  • 10Deb K, Joshi D, Anand A. Real-Coded evolutionary algorithms with parent-centric recombination. Technical Report, KanGALReport No.2001003, Kanpur: Indian Institute of Technology, 2001. 被引量:1

共引文献55

同被引文献96

引证文献7

二级引证文献79

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部