摘要
应用TM卫星图像数据,根据对黑龙江省阿什河约80 km河段、松花江及嫩江约2 300 km河段的分维研究,证明了在度量数列满足持邻性和等比收敛性的条件下,可以应用度量映射方法计算随机分形集的分维。研究表明,黑龙江省阿什河河段(约80 km)的分维比松花江和嫩江河段(约2 300 km)的分维高;曲线的分维一定要与标度的变化区间联系起来,否则分维将失去可比性;河流的分维不仅与标度有关,还与矢量化时原图像的分辨率有关。
The fractal dimension research on reaches of Arshi River (about 80 km) ,Songhua River and Nenjiang River(about 2 300 km) in Heilongjiang Province prove that we can utilize measuring mapping method to calculate the fractal dimension of random fractals under some suppositions. The research shows the fractal dimension on reaches of Arshi river (about 80 km) is higher than that of Songhua River and Nenjiang River (about 2 300 km). Noticeably, the fractal dimension of curve must contact with yardstick variable interval, otherwise it is incomparable. Moreover, the fractal dimension of river is related not only with the yardstick, but also with the resolving power of original image before vector.
出处
《武汉大学学报(信息科学版)》
EI
CSCD
北大核心
2006年第5期444-447,共4页
Geomatics and Information Science of Wuhan University
基金
黑龙江省自然科学基金资助项目(C2004-08)
国家基础研究重点规划资助项目(2002CB111504)
关键词
度量映射
均匀度
河流分维
持邻性
等比收敛
measuring mapping
uniformity
fractal dimension of river
keeping neighborhood property
geometric proportion convergence