期刊文献+

度量映射方法在河流分维测算中的应用 被引量:1

Application of Measuring Mapping Method on Calculating Fracatal Dimension of River
下载PDF
导出
摘要 应用TM卫星图像数据,根据对黑龙江省阿什河约80 km河段、松花江及嫩江约2 300 km河段的分维研究,证明了在度量数列满足持邻性和等比收敛性的条件下,可以应用度量映射方法计算随机分形集的分维。研究表明,黑龙江省阿什河河段(约80 km)的分维比松花江和嫩江河段(约2 300 km)的分维高;曲线的分维一定要与标度的变化区间联系起来,否则分维将失去可比性;河流的分维不仅与标度有关,还与矢量化时原图像的分辨率有关。 The fractal dimension research on reaches of Arshi River (about 80 km) ,Songhua River and Nenjiang River(about 2 300 km) in Heilongjiang Province prove that we can utilize measuring mapping method to calculate the fractal dimension of random fractals under some suppositions. The research shows the fractal dimension on reaches of Arshi river (about 80 km) is higher than that of Songhua River and Nenjiang River (about 2 300 km). Noticeably, the fractal dimension of curve must contact with yardstick variable interval, otherwise it is incomparable. Moreover, the fractal dimension of river is related not only with the yardstick, but also with the resolving power of original image before vector.
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2006年第5期444-447,共4页 Geomatics and Information Science of Wuhan University
基金 黑龙江省自然科学基金资助项目(C2004-08) 国家基础研究重点规划资助项目(2002CB111504)
关键词 度量映射 均匀度 河流分维 持邻性 等比收敛 measuring mapping uniformity fractal dimension of river keeping neighborhood property geometric proportion convergence
  • 相关文献

参考文献7

二级参考文献28

  • 1连长云,苏小四,朴寿成,严光生.中国大陆深断裂系的分形特征[J].世界地质,1995,14(3):34-38. 被引量:19
  • 2汪富强 李后强.分形[M].济南:山东教育出版社,1997.26-27. 被引量:1
  • 3朱大奎 柯贤坤 等.江苏海岸潮滩沉积的研究[J].黄渤海海洋,1986,4(3):19-27. 被引量:14
  • 4Kint V, Meirvenne M V, Nachtergale L, Geudens G, N Lust.Spatial methods for quantifying forest stand structure development: a comparison between nearest-neighbor indices and variogram analysis[J]. Science, 2003, 49(1):36~49 被引量:1
  • 5Donnelly K P. Simulation to determine the variance and edgeeffects of total nearest Neighbor distance[A]. In: Hodder, I.R.(ed.).Simulation methods in archaeology [M]. Cambridge University Press, London, United Kingdom, 1978. 91~95 被引量:1
  • 6Mandelbrot B B. Fractals: Form, Chance and Dimension [M].Freeman, San Francisco, 1977 被引量:1
  • 7Pielou E C. Mathematical Ecology [M]. Wiley, Oxford, United Kingdom, 1977. 385 被引量:1
  • 8Fuldner K. Zur Strukturbeshreibung in Mischbestanden [J].Forstarchiv, 1995, 66:235-240 被引量:1
  • 9Lloyd M. Mean Crowding[J]. J. Anim. Ecol. 1967, 36:1-30 被引量:1
  • 10Moristita J. Measuring of the dispersion of individuals and analysis of the distributional patterns[M]. Mem. Fao. Sci., Kyusha University Der. E.,1959. 380-385 被引量:1

共引文献78

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部