期刊文献+

The Lagrangian and the Lie symmetries of charged particle motion in homogeneous electromagnetic field 被引量:2

The Lagrangian and the Lie symmetries of charged particle motion in homogeneous electromagnetic field
下载PDF
导出
摘要 In this paper, a constant of motion of charged particle motion in homogeneous electromagnetic field is derived from Newton's equations and the characteristics of partial differential equation, the related Lagrangian is also given by means of the obtained constant of motion. By discussing the Lie symmetry for this classical system, this paper obtains the general expression of the conserved quantity, It is shown that the conserved quantity is the same as the constant of motion in essence, In this paper, a constant of motion of charged particle motion in homogeneous electromagnetic field is derived from Newton's equations and the characteristics of partial differential equation, the related Lagrangian is also given by means of the obtained constant of motion. By discussing the Lie symmetry for this classical system, this paper obtains the general expression of the conserved quantity, It is shown that the conserved quantity is the same as the constant of motion in essence,
作者 楼智美
机构地区 Department of Physics
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2006年第5期891-894,共4页 中国物理B(英文版)
关键词 constant of motion LAGRANGIAN Lie symmetry conserved quantity constant of motion, Lagrangian, Lie symmetry, conserved quantity
  • 相关文献

参考文献20

  • 1Santilli R M 1978 Foundations of Theoretical Mechanics Ⅰ(New York: Springer). 被引量:1
  • 2Ge W K and Mei F X 2001 Acta Armarnentarii 22 241. 被引量:1
  • 3Lopez G 1996 Ann. Phys. 251 363, 372. 被引量:1
  • 4Lutzky M 1979 J. Phys. A: Math. Gen. 12 973. 被引量:1
  • 5Sarlet W 1981 J. Phys. A: Math. Gen. 14 2227. 被引量:1
  • 6Goldstein G 1980 Classical Mechanics (Reading, MA:Addison-Wesley). 被引量:1
  • 7Lou Z M 2005 Acta Phys. Sin, 54 1457. 被引量:1
  • 8Mei F X 1999 Applications of Lie Groups and Lie Algebras to Constrainvd Mechanical Systems (Beijing: Science Press). 被引量:1
  • 9Zhao Y Y and Mei F X 1999 Symmetries and invariants of Mechanical Systems (Beijing: Science Press). 被引量:1
  • 10Mei F X 2003 Acta Phys. Sin. 52 1048. 被引量:1

同被引文献44

  • 1赵跃宇.非保守力学系统的Lie对称性和守恒量[J].力学学报,1994,26(3):380-384. 被引量:77
  • 2张毅.A new type of adiabatic invariants for nonconservative systems of generalized classical mechanics[J].Chinese Physics B,2006,15(9):1935-1940. 被引量:8
  • 3梅风翔.李群和李代数对约束力学系统的应用[M].北京:科学出版社,1999. 被引量:2
  • 4LUTZKY M. Dynamical symmetries and conserved quantities[J]. Journal of Physics A :Mathematical and General, 1979,12(7):973-981. 被引量:1
  • 5RIEWE F. Nonconservative lagrangian and hamihonian mechanics[J]. Physical Review E, 1996,53 (2) : 1890-1899. 被引量:1
  • 6AGRAWAL O P. Formulation of Euler-Lagrange equations for fractional variational problems[J]. Journal of Mathematical Analysis and Applica- tions, 2002,272 ( 1 ) : 368-379. 被引量:1
  • 7ATANACKOVIC T M ,KONJIK S,PILIPOVIC S. Variational problems with fractional derivatives :Euler-Lagrange equations[J]. Journal of Physics A : Mathematical and Theoretical, 2008,41 (9) : 1751-8113. 被引量:1
  • 8MALINOWSKA A B,TORRES D F M. Fractional Calculus of Variations[M]. Singapore :Imperial College Press,2012. 被引量:1
  • 9LUO S K,LI L. Fractional generalized Hamiltonian mechanics and Poisson conservation law in terms of combined Riesz derivatives[J]. Nonlinear Dynamics, 2013,73 ( 1/2 ) : 639-647. 被引量:1
  • 10ZHANG Y,ZHOU Y. Symmetries and conserved quantities for fractional action-like Pfaffian variational problems[J]. Nonlinear Dynamics,2013, 73(1/2) :783-793. 被引量:1

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部