期刊文献+

混沌背景下微弱谐波信号的恢复 被引量:3

Recovery of weak harmonic signals in chaos
下载PDF
导出
摘要 提出一种新的从混沌干扰中恢复微弱谐波信号的方法。首先根据混沌的几何性质,融合相空间重构技术和离散余弦变换,建立了一种新的分离谐波信号相空间投影方法。然后,从功率谱密度估计中提取谐波信号的频率,利用最小二乘估计提高谐波信号的恢复精度。仿真实验表明该方法具有高度的稳定性和可靠性。 A novel method to recover the weak harmonic signals from the measured data contammated with me chaotic interference was proposed. A new phase space projection method was established to separate the harmonic signals from the strong chaos by combining the phase space reconstruction with the cosine transformation based on the geometry of chaos. The power spectrum estimation was used to extract the frequency of harmonic signals, and the least-squares procedure was applied to increase the recovery accuracy of the harmonic signals. Computer simulation verified that this method have high stability and reliability in recovering the weak signals in the chaos.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2006年第3期422-428,共7页 Journal of Jilin University:Engineering and Technology Edition
基金 国家自然科学基金资助项目(60172032)
关键词 信息处理技术 谐波恢复 余弦变换 混沌 相空间重构 information processing recovery of harmonics cosine transform chaos phase space reconstruction
  • 相关文献

参考文献18

  • 1Stark J, Arumugaw B. Extracting slowly varying signal from a chaotic background [ J ]. International Journal of Bifurcation and Chaos, 1992, 2 (2) :413-419. 被引量:1
  • 2Haykin S, Principe J. Making sense of a complex world:using neural networks to dynamically model chaotic events such as sea clutter [ J ]. IEEE Signal Processing Magzine, 1998,15 (3) :66-81. 被引量:1
  • 3Henry Leung, Huang Xing-ping . Sinsoidal frequency estimation in chaotic noise [J]. ICASSP, 1995, 2: 1344-1347. 被引量:1
  • 4Short K M, Parker A T. Unmasking a hyperchaotic communication scheme [ J ].Physical Review E, 1998, 58( 1 ) : 1159-1162. 被引量:1
  • 5Huang Xian-gao, Xu Jian-xue. Unmasking chaotic mask by a wavelet multiscale decomposition algorithm [ J]. International Journal of Bifurcation and Chaos. 2001, 11(2) :561-569. 被引量:1
  • 6汪芙平,郭静波,王赞基,萧达川,李茂堂.强混沌干扰中的谐波信号提取[J].物理学报,2001,50(6):1019-1023. 被引量:40
  • 7Cawley R, Hsu G H. Local-geometric-projection method for noise reduction in chaotic maps and flow[ J ]. Phys Rev A, 1992,46:3057-3082. 被引量:1
  • 8Sauer T. A noise reduction mothod for signals from nonlinear systems [ J ]. Physica D, 1992,58 : 193 -201. 被引量:1
  • 9Kern A, Steeb W H,Stoop R. Projective noise cleaning with dynamic neighborhood selection [ J ]. International Journal of Modern Physis C ,2000,11 ( 1 ) : 125-146. 被引量:1
  • 10Effern A, Lehnertz K, Schreiber T, Grunwald T, David P, Elger C E. Nonlinear denoising of transient signals with application to event-related potentials[J]. Physica D ,2000,140:257-266. 被引量:1

二级参考文献3

  • 1Leung H,IEEE Trans Signal Processing,1996年,44卷,2456页 被引量:1
  • 2Haykin S,Proc IEEE,1995年,83卷,94页 被引量:1
  • 3张贤达,现代信号处理,1995年 被引量:1

共引文献39

同被引文献20

  • 1徐清舟,汪国军.四元数体上线性方程组的加正定权极小范数最小二乘解[J].河南师范大学学报(自然科学版),2005,33(2):19-22. 被引量:2
  • 2王国光,王树勋.提取强混沌干扰中谐波信号的方法[J].吉林大学学报(理学版),2006,44(3):439-444. 被引量:3
  • 3Yang Shiyong, Li Hongwei. Estimating the number of harmonies using enhanced matrix[J]. IEEE Signal Processing Letters, 2007,14(2) :137 - 140. 被引量:1
  • 4Yang Shiyong, Li Hongwei. Estimation of the number of harmonics in multiplicative and additive noise[J]. Signal Processing ,2007,87(10):1128 - 1137. 被引量:1
  • 5Miron S, Bihan N Le, Mars J. Quaternion-MUSIC for vectorsensor array processing[J]. IEEE Trans. on Signal Processing, 2006,54(4) :1218 - 1229. 被引量:1
  • 6Le Bihan N, Mars J. Signal value decomposition of quaternion matrices: a new tool for vector-sensor signal processing[J]. Signal Processing, 2004,84 (10) : 1177 - 299. 被引量:1
  • 7Teijiro Isokawa, Haruhiko Nishimura, Naotake Kamiura, et al. Fundamental properties of quaternionic Hopfield neural network[C]// Vancouver, Canada : ICNN, 2006 : 218 - 223. 被引量:1
  • 8Choukroun D. A novel quaternion kalman filter[D]. Israel Institute of Technology, 2004. 被引量:1
  • 9Ell T A, Sangwine S J. Hypereomplex wiener-khintchine theorem with application to color image correlation[C]//Proc, of the IEEE, 2000:10 - 13. 被引量:1
  • 10李元亮.四元数矩阵[M].长沙:国防科技大学出版社,2002. 被引量:4

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部