期刊文献+

基于人工神经网络自适应共振理论的手写字符识别 被引量:1

Handwritten character recognition based on adaptive resonance theory of artificial neural network
下载PDF
导出
摘要 以人工神经网络中的自适应共振理论为基础,研究了用光标在电脑屏幕上进行手写输入的字符识别方法.根据专业领域文字输入中经常使用特殊字符的特点,程序部分由内核是Unicode的Java实现.采用Unicode编码不但可以方便地实现特殊字符的识别和显示,还有利于跨平台的移植,较好地解决了文字录入中特殊字符不易查找以及某些用户操作键盘不便等实际问题. Based on the artificial neural network (ART), the recognition of handwritten characters inputting at the computer screen with the cursor is developed. As some special characters are often input in professional field, the program is realized in Java in which Kernel Unicode. Adoption of Unicode code can not only realize the recognition and the display of character conveniently, but also benefit transplanting in different system. It will be better to solve some problems of characters inputting, such as special characters that are difficult to find out and some users operate keyboard inconveniently.
出处 《桂林工学院学报》 北大核心 2006年第1期122-124,共3页 Journal of Guilin University of Technology
基金 广西教育厅项目(桂教科研[2004]20)
关键词 手写字符识别 人工神经网络 自适应共振理论 JAVA语言 handwritten character recognition artificial neural network adaptive resonance theory (ART) Java language
  • 相关文献

参考文献4

  • 1王旭等编著..人工神经元网络原理与应用[M].沈阳:东北大学出版社,2000:153.
  • 2陈友斌,丁晓青,吴佑寿.非特定人脱机手写汉字识别[EB/OL].http://www.chinaocr.net/show_hdr.php?xname=TVKUIV0&dname=JGU2K01&xpos=9,2004-9-12. 被引量:1
  • 3Horstmann C S,Cornell G.Java2核心技术(第5版)卷I原理[M].李如豹,刚冬梅译.北京:机械工业出版社,2002. 被引量:1
  • 4Horstmann C S,Cornell G.Java2核心技术(第5版)卷II高级性能[M].王建华,董志敏,杨保明,等译.北京:机械工业出版社,2003. 被引量:1

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部