期刊文献+

基于声强与神经网络技术的发动机故障诊断 被引量:5

An Engine Fault Diagnosis System Based on the Technologies of Sound Intensity and Neural Network
下载PDF
导出
摘要 根据发动机的结构特点,将其表面划分成不同的测试区域进行声强信号采集;依据声强特征,确定不同区域对应零部件的工作状况;利用模块化神经网络,建立基于声强特征的故障诊断模型,该模型中包含发动机低速与中速诊断模块、决策模块和故障知识库;在建模过程中,利用特征函数强化故障特征作为网络输入。结果表明,该方法具有诊断精度高、速度快、实时自学习等特点,为建立更为完善的发动机智能化故障诊断系统提供新途径。 According to the characteristics of engine structure, the engine surface is divided into different test areas for acquiring sound intensity signals. Based on the features of sound intensity, the working status of the engine parts and components can be determined. By utilizing modular neural network, a fault diagnosis model is built based on sound intensity features. The model includes four sub-modules for low speed diagnosis, medium speed diagnosis, decision-making and fault knowledge database respectively. As network input, the fault feature is enhanced by eigen-function in modeling. The results show that the diagnosis method has advantages of high diagnosis accuracy, short diagnosis time, and the ability of real time self-learning, which provides a new way to build a more perfect intelligent fault diagnosis system for engines.
出处 《汽车工程》 EI CSCD 北大核心 2006年第4期401-404,共4页 Automotive Engineering
基金 南京理工大学青年学者基金(njust200202)资助。
关键词 声强 神经网络 发动机 故障诊断 Sound intensity, Neural network, Engine, Fault diagnosis
  • 相关文献

参考文献4

  • 1蒋孝煜,连小珉著..声强技术及其在汽车工程中的应用[M].北京:清华大学出版社,2001:236.
  • 2Abe T,Anderton D.Digital Acoustic Intensity Techniques in Gasoline Engine Noise Studies[J].SAE Paper 820363. 被引量:1
  • 3Hagan M T,Demuth H B,Beale M H.Neural Network Design 神经网络设计(英文版)[M].北京:机械工业出版社,2002. 被引量:1
  • 4飞思科技产品研发中心编著..MATLAB 6.5辅助神经网络分析与设计[M].北京:电子工业出版社,2003:322.

同被引文献31

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部