期刊文献+

设备状态趋势的SVM预示技术研究 被引量:5

Support Vector Machine Condition Trend Prediction Technology
下载PDF
导出
摘要 SVM采用结构风险最优化准则,预示推广能力强并有很好的鲁棒性。分析了SVM技术的理论,推导了SVM进行机电设备趋势预测的理论算法,给出了进行预测的步骤,建立了SVM用于故障趋势预示的模型。将该模型用于某机组振动烈度的预示,进行了不同核函数和不同C值和ε值的比较,证明采用径向基函数和适当的损失函数,取得了较好的预测效果。并将SVM与AR模型的提前20步预测结果进行了比较。结果证明该算法对设备状态的趋势具有较好的预示能力。 With structural risk minimization principles, support vector machine(SVM) has excellent generalization ability, good forecasting accuracy and robustness. After the SVM theory is analyzed, a novel SVM trend prediction method is presented, and the SVM prediction model and procedures are put forward. The SVM model has been applied to the fault trend prediction of the vibration from a machine set. Through comparing different kernel functions and parameters C and 6, good prediction results have been obtained by using radial base functions (RBF) and proper loss functions. Furthermore, the advanced-20- step prediction result of the SVM model is compared with that of auto regression (AR) for the machine set, which shows that the SVM has excellent machinery condition trend prediction ability.
出处 《机械科学与技术》 CSCD 北大核心 2006年第4期379-381,共3页 Mechanical Science and Technology for Aerospace Engineering
基金 国家自然科学基金项目(50375017) 北京市自然基金项目(3042006) 北京市重点实验室开放项目(030314) 高等学校博士学科点专项科研基金项目(2005000306)资助
关键词 设备状态 趋势预示 SVM 预测模型 machine condition trend prediction support vector machine prediction model
  • 相关文献

参考文献4

二级参考文献11

  • 1张安华.灰色预测模型及其在故障预测中的应用[J].设备管理与维修,1994(9):21-22. 被引量:5
  • 2[1]Hippert H S, Pefreira C E, Souza R C. Neural Network for Short-Term Load Forecasting: A Review and Evaluation [ J ]. IEEE Trans on Power System, 2001,16(2) :44-54. 被引量:1
  • 3[2]VN Vapnik. The nature of statistical learning theory[M]. New York: Springer, 1995. 72-236. 被引量:1
  • 4[3]Muller K R, Smola A J, Ratsch G, et al. Prediction Time Series with Support Vector Machines[ C]. Proc of ICANN97,Springer LNCS 1327:999-1 004. 被引量:1
  • 5[4]Francis E H Tay, Cao Li-juan. Application of support vector machines in financial time series forecasting [J]. Omega, 2001,29:232-239. 被引量:1
  • 6[5]Bo-Juen Chen, et al. Load forecasting using support vector machines: A study on EUNITE competition 2001 [ DB/OL ]. Available at http ://neuron. tuke. sk/competition/ 被引量:1
  • 7[6]Zhang Q, Benveniste A. Wavelet Network[J].IEEE Trans on Neural Network, 1992, 3(9):889-898. 被引量:1
  • 8[7]Smola A J. Learning with Kernels [ D ]. PhD thesis, Technische Universitat Berlin, 1998. 被引量:1
  • 9[8]Ralotomamenjy A, Canu S. Learning, frame,reproducing kernel and regularization [ R ].Technical Report TR2002-01, perception, systemes et Information, INSA de Rouen, 2002. 被引量:1
  • 10[9]Shevade S K, Keerthi S C. Bhattacharyy et al.Improvements to SMO algorithm for SVM regression [ J ]. IEEE Trans on Neural Networks,2000,11(5) :1 188-1 193. 被引量:1

共引文献28

同被引文献41

引证文献5

二级引证文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部