摘要
设λ>0,考虑从lp(Z)到Lp(R)(p=1)的算子Lλ:(Lλy)=∑k∈ZykLλ(x-k),y=(yk)k∈Z,x∈R,其中Lλ(x)=∑k∈Zcke-λ(x-k)2,x∈R,满足插值条件Lλ(j)=δ0j,j∈Z,且δ0j是Kronecher常数.在此研究的‖Lλ‖p(λ→0)渐近行为是基于‖Lλ‖p的积分表达式进行的.得到了一个强渐近估计:‖Lλ‖p=π42logπλ2+π42(log2λ+γ)+π2A+o(1)(λ→0)其中A是一绝对常数并且γ是欧拉常数.
Suppose λ is a positive number. Consider the Gaussian cardinal interpolation opearator Lλ, defined by the equation (Lλy) =∑k∈ZykLλ(x-k),y=(yk)k∈z,x∈R, as a linear mapping from l^p(Z) into L^p (R) (p= 1), where Lλ (x) = ∑k∈Zcke-λ(x-k)^2,x∈R with Lλ (j) =δoj ,j∈ Z, here δoj is the Kronecher constant. The study of the asymptotic behavior of ‖(L)λ‖p(λ→0) is based on an integral expression of ‖(L)λ‖. It is shown that ‖Lλ‖p=4/π^2log π^2/λ+4/π^2(log 2/λ+r)+2/πA+o(1)λ→0, where A is an absolute constant and γ is Euler constant.
出处
《北京师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2006年第2期116-119,共4页
Journal of Beijing Normal University(Natural Science)
基金
国家自然科学基金资助项目(10471010)
北京师范大学"985工程"资助项目