期刊文献+

一种基于分水线和先验知识的集成电路图像分割方法 被引量:2

IC Image Segmentation Based on Watershed and Prior Knowledge
下载PDF
导出
摘要 在W atershed的分割图像基础上,使用贝叶斯理论的图像分割方法。首先对原始图像进行W atershed变换,然后在变换后的标注图像上进行能量的计算,通过选择最小能量的目标依次找出最理想的目标区域。设计一个先验密度来惩罚图像当中W atershed变换后相似的区域,图像分割进而变成对目标子集的最大后验估计。这样就可以逐步找出最理想目标区域和背景区域。实验结果证明,该方法有较好的分割结果。 Used Bayesian image segmentation algorithm based on Watershed transform , We calculate the energy of the label image result from the Watershed transform by designing a prior density that penalizes the area of homogeneous parts in images. The segmentation problem is the maximizing a posteriori estimation of the set of areas such we can find the optimal areas of object, and the other areas of the image are looked as background areas. The experiments indicate our Algorithm is effective for image segmentation .
出处 《计算机应用研究》 CSCD 北大核心 2006年第5期258-260,共3页 Application Research of Computers
关键词 贝叶斯框架 边缘检测 图像分割 分水线变换 Bayesian Framework Edge Detection Image Segmentation Watershed Transform
  • 相关文献

参考文献9

  • 1John, Canny. A Computational Approach to Edge Detection [ J ].IEEE Trans. PAMI, 1986,8 (6) :679-698. 被引量:1
  • 2Tremeau A, Borel N. A Region Growing and Merging Algorithm to Color Segmentation [ J ]. Pattern Recognition, 1997,30 ( 7 ) : 1191-1203. 被引量:1
  • 3Zhu S C, Yuille A. Region Competition: Unifying Snakes, Region Growing and Bayes/MDL for Muhiband Image Segmentation [ J ].IEEE Trans. PAMI, 1996,18(9) :884-900. 被引量:1
  • 4Pinho A J, Almeida LB. Edge Detection Filters Based on Artificial Neural Networks[ C]. Pro. of ICIAP' 95, IEEE Computer Society Press, 1995. 159-164. 被引量:1
  • 5Urage S Zerubia J, Berthod M. A Markovian Model for Contour Grouping[ J ]. Pattern Recognition, 1995,28 (5) :683-693. 被引量:1
  • 6L Vincent. Soille P Watersheds in Digital Spaces:An Efficient Algorithm Based on Immersion Simulations [ J ]. IEEE Trans. PAMI,1991,13(6) :583-598. 被引量:1
  • 7Charles Kervrann. Bayesian Image Segmentation Through Level Line Selection[ J]. Image Anal. Stereol, 2001,20:163-168. 被引量:1
  • 8Morel JM, Soolimini S. Variational Methods in Image Segementation[ M ]. Boston: Birkhauser, 1994. 被引量:1
  • 9Alvarez L, Cousseau Y, Modle JM. Scales in Natural Images and a Consequence on Their Bounded Variation [ Z ]. 1999. 被引量:1

同被引文献10

  • 1C Harris and M J Stephens. A combined comer and edge detector [C]. In Alvey Vision Conference, 1985. 147-152. 被引量:1
  • 2H Moravec. Obstacle avoidance and navigation in the real world by a seeing robot rover[J]. Technical Report CMU - RI - TR - 3, Carnegie - Mellon University, Robotics Institute, 1980. 被引量:1
  • 3C Schmid, R Mohr and C Bauckhage. Evaluation of interest point detectors [ J ]. International Journal of Computer Vision, June 2000,37(2) :151 - 172. 被引量:1
  • 4M Rousson, T Brox and R Deriche. Active Unsupervised Texture Segmentation on Diffusion Based Feature Space [C]. IEEE Conf. on Computer Vision and Pattern Recognition, Madison, Wisconsin, June 18 - 20, 2003, 2:699 - 704. 被引量:1
  • 5T Brox and J Weickert. Nonlinear matrix di_usion for optic _ow estimation[C]. In Proc. 24th DAGM Symposium, volume 2449 of Lecture Notes in Computer Science, pages 446_453, Ztirieh, Switzerland, September. Springer, 2002. 被引量:1
  • 6S D Yanowiztz,A M Bruckstein. A new method for image segmentation[ J ]. Computer Vision, Graphics and Image Processing, 1989,46:82 -95. 被引量:1
  • 7R Adams, L Bischof. Seeded region growing[J]. IEEE Trans on PAMJ, 1994, 16(6) :641 -647. 被引量:1
  • 8Emanuel Gofman. Developing an efficient region growing engine for image segmentation [ J ]. ICIP,2006:2413 -2416. 被引量:1
  • 9Kitahara M, Achenbach JD, Guo QC. Neural network for crack -depth determination from ultrasonic back scattering data[ J ]. Review of Progress Quantitative Nondestructive Evaluation, 1992,11A : 701 - 708. 被引量:1
  • 10王巍,夏玉华,梁斌,强文义,刘良栋.月球漫游车关键技术初探[J].机器人,2001,23(3):280-284. 被引量:19

引证文献2

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部