期刊文献+

一种新的背景模型建立及更新方法 被引量:3

Novel Method for Background Modeling and Update
下载PDF
导出
摘要 提出一种新的建立背景模型和更新背景的方法。首先使用一种新颖的方法建立初始背景,然后对每一输入帧使用背景差分法获得前景,并利用分类器将前景分类为运动目标、静止目标、虚假目标、噪声,最后在背景更新阶段采用基于前景目标的背景更新方法。实验结果表明,该方法能建立可靠初始背景,并能有效地解决背景更新“死锁”问题,增强背景模型的鲁棒性。 Proposes a novel background modeling and update algorithm. Firstly a novel background modeling is built and for each image sequence foreground is obtained by background subtraction, then a foreground object classifier is used to get moving object, static object, false object, and noise, finally the background model is updated by a foreground object classification based background update algorithm. Extensive experiments results on indoor and outdoor image sequences demonstrate that the proposed system can effectively build a reliable background model and resolve the deadlock problem which results from false object.
出处 《计算机应用研究》 CSCD 北大核心 2006年第5期239-241,共3页 Application Research of Computers
基金 国家"863"计划资助项目(863-306-ZD05) 湖南农业大学人才引进基金资助项目(03YJ08)
关键词 背景模型 前景分类 虚假目标 背景更新 Background Model Foreground Object Classification False Object Background Update
  • 相关文献

参考文献8

  • 1Wang L, Hu W, Tan T. Recent Developments in Human Motion Analysis [ J ]. Pattern Recognition, 2003, 36 ( 3 ) : 585- 601. 被引量:1
  • 2I Haritaoglu, D Harwood, L S Davis. W4: Real-time Surveillance of People and Their Activities[ J ]. IEEE Transactions Pattern Analysis Machine Intelligence, 2000,22(8 ) :809-830. 被引量:1
  • 3C Stauffer,W Grimson. Adaptive Background Mixture Models for Realtime Tracking[ C]. Proceedings of the IEEE CS Conference on Computer Vision and Pattern Recognition. 被引量:1
  • 4S J McKenna, et al. Tracking Groups of People[ J]. Computer Vision Image Understanding, 2000,80( 1 ): 42-56. 被引量:1
  • 5Elgammal A, Harwood D, Davis L S. Nonparametric Model for Background Subtraction[ C ]. Proc. of ICCV ' 99 FRAME-RATE ' Workshop, 1999. 被引量:1
  • 6Karmann K P, Von Brant. Moving Object Recognition Using an Adaptive Background Memory [ J ]. Time Varying Image Processing and Moving Object Recognition, Elsevier Science B. V. , 1990. 被引量:1
  • 7Ehud Rivlin, Michael Rudzsky, et al. A Real-time System for Classification of Moving Objects[ C ]. Proceedings of the 16th International Conference on Pattern Recognition( ICPR' 02 ) ,2002. 被引量:1
  • 8R T Collins, et al. A System for Video Surveillance and Monitoring: VSAM Final Report. CMU-RI-TR-00-12 [ R ]. Carnegie-Mellon University, 2000. 被引量:1

同被引文献29

  • 1侯志强,韩崇昭.基于像素灰度归类的背景重构算法[J].软件学报,2005,16(9):1568-1576. 被引量:97
  • 2曹丹华,邹伟,吴裕斌.基于背景图像差分的运动人体检测[J].光电工程,2007,34(6):107-111. 被引量:36
  • 3CHU Hong-xia. Object Tracking Algorithm Based on Camshift Algorithm Combinating with Difference in Frame[ C]// Proceedings of the IEEE Interantional Conference on Automation and Logistics. China: [ s. n. ] ,2007:51 - 55. 被引量:1
  • 4REN Y, CHUA C S, HO Y K. Motion Detection with Nonstationary Background [ C ]// Proceedings International conference on Computer vision. Canada:[ s. n. ] , 1999.255 - 261. 被引量:1
  • 5STAUFFER C, GRIMSON W E L. Adaptive Background Mixture Models for Real-time Tracking[ C ]//Proceedings of IEEE Computer Society Conference on Computer Vision and Patern Recognition. USA:[s. n. ] ,1999:248 -252. 被引量:1
  • 6STAUFFER C. Learning patterns of activity using real-time tracking[ J]. IEEE Transactions on Pattern Analysis & Machine Intelligence ,2000,22 ( 8 ) :747 - 757. 被引量:1
  • 7KORNPROBST P, DERICHE R. Image sequence analysis via partial difference equations[ J ]. Journal of Mathematical Imaging and Vision, 1999,11 ( 1 ) :5 - 26. 被引量:1
  • 8阮秋琦.数学图像处理学:第2版[M].北京:电子工业出版社,2001. 被引量:1
  • 9尹小华.智能视频监控中多目标检测跟踪技术研究[D].西安:西安电子科技大学机电工程学院,2006. 被引量:1
  • 10BARRON J, FLEET D, BEAUCHEMIN S. Performance of optical flow techniques[ J ]. International Journal of Computer Vision, 1994,12 ( 1 ) :42 - 77. 被引量:1

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部