摘要
引入一种类似Bézier的二次三角多项式曲线(简称为QT-Bézier曲线),其基函数由带两个形状参数λ,μ的二次三角函数组成.由3个顶点控制的QT-Bézier曲线插值于起点和末点,它不仅具有二次Bézier曲线许多常见的性质,而且利用λ,μ的不同取值能局部或整体调控曲线的形状,并能使两段QT-Bézier曲线的C1连接具有一定的灵活性,且曲线更逼近于控制多边形.此外,QT-Bézier曲线还能精确表示椭圆与抛物线.
A quadratic trigonometric Bézier curve ( named briefly QT-Bézier curve) with two shape parameters λ and μ is presented in this paper. The curve that interpolates start point and end point is analogous to Bézier curve, The curve possesses most of the properties of the quadratic Bézier curve. By taking the different values of λ and μ, the shape of the curve can be adjusted locally or totally,and two pieces of QT-Bézier curves can be connected with C1 continuity flexibly. The ellipse and can be represented exactly by QT-Bézier curve.
出处
《合肥学院学报(自然科学版)》
2006年第1期20-23,共4页
Journal of Hefei University :Natural Sciences
基金
合肥学院自然科研项目基金(6KY017ZR)资助