摘要
用动力系统理论、分支理论和直接方法,研究了著名的D avey-S tew artson方程(DS)。在积分常数为零的条件下,证明了该方程存在光滑孤立波解、不可数无穷多光滑周期波解、扭结波和反扭结波解。求出了在参数取某些值时D avey-S tew artson方程的显式精确行波解,并在不同的参数条件下,给出了上述光滑孤立波解、不可数无穷多光滑周期波解、扭结波和反扭结波解存在的各类充分条件。
The theory of dynamieal systems and the theory of bifurcation and the direct method are applied to the study of Davey-Stewartson equation (DS). When the integral constant is zero, the existence of smooth solitary wave solutions ,uncountably infinite, many smooth periodic wave solutions,and kink and anti-kink wave solutions are proved. Some exact explicit parametrie representations of travelling wave solutions of Davey-Stewartson equation are obtained. Under different parametric conditions ,various sufficient conditions to guarantee the existence of the above solutions are given.
出处
《桂林电子工业学院学报》
2006年第2期116-119,共4页
Journal of Guilin Institute of Electronic Technology
基金
广西科学基金资助项目(0575092)