期刊文献+

基于数据挖掘技术的黄土湿陷性评价 被引量:11

Assessment of loess collapsibility based on data mining
下载PDF
导出
摘要 为了运用数据挖掘技术进行黄土湿陷性评价,根据实际工程资料建立了黄土物理力学数据库,用主成分分析法对原数据进行压缩,用压缩后的新变量依据人工神经网络理论建立了预测模型,用BP算法进行了模型的校正及预测。工程实例分析表明,预测湿陷系数与试验值所得湿陷系数的湿陷量计算值相比,准确率可达96%以上,说明这种智能化评价方法具有可行性和实用性。 This paper presents a method for assessment of loess collapsibility based on the dada mining technology. Loess collapsibility is predicted by using the function of data mining. The database should be created based on practical engineering. Data in the database are compressed with principal component analysis (PCA). Prediction model is built with BP neural network. Variables processed through PCA are used as input part of prediction model. Loess collapsibility is predicted by the model. The predicted loess collapse settlement is compared with measured loess collapse settlement. The result shows that prediction precision of collapse settlement is up to 96% by a specific project example,indicating that the intelligent method of evaluating loess collapsibility is very useful in engineering.
出处 《西北农林科技大学学报(自然科学版)》 CSCD 北大核心 2006年第4期130-134,共5页 Journal of Northwest A&F University(Natural Science Edition)
基金 国家自然科学基金项目(10572090)
关键词 黄土湿陷性 数据挖掘技术 主成分分析 BP神经网络 loess collapsibility data mining principal component analysis BP neural network
  • 相关文献

参考文献12

二级参考文献22

共引文献157

同被引文献116

引证文献11

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部