期刊文献+

基于Gabor小波和二维主元分析的人脸识别 被引量:11

Face Recognition Based on Gabor Wavelet and Two-Dimensional Principal Component Analysis
下载PDF
导出
摘要 论文提出了一种基于Gabor小波和二维主元分析(2DPCA)的人脸识别方法。该方法首先对人脸图像进行Gabor小波变换,将小波变换的系数作为人脸图像的特征向量;然后,用2DPCA对所得的人脸图像特征进行降维,并采用最近邻法进行分类;最后,利用AT&T人脸库,对基于Gabor小波和二维主元分析(2DPCA)的人脸识别方法和基于Gabor小波和PCA的人脸识别方法进行了仿真比较实验。仿真实验表明,基于Gabor小波和2DPCA的人脸识别方法具有较好的识别性能。 This paper presents a method of face recognition based on the Gabor wavelet and two-dimensional principal component analysis (2DPCA ).First , the coefficients of Gabor wavelet transform deriving from a face image are taken as eigenvectors.And then 2DPCA is used to decrease the dimension of the eigenvector,and the nearest neighbor classifier is employed for face classification.Finally,by use of the AT&T face database,the comparison simulations are performed both on the method based on the Gabor wavelet and 2DPCA,and the one based on the Gabor wavelet and PCA.The simulation result shows that the former has the good recognition performance for the face image.
出处 《计算机工程与应用》 CSCD 北大核心 2006年第10期55-57,共3页 Computer Engineering and Applications
基金 河南省科技厅资助项目 河南省教委自然科学基金资助项目(编号:2003120015) 河南省高校创新人才工程项目
关键词 GABOR小波 2DPCA 特征向量 人脸识别 Gabor wavelet,2DPCA,eigenvector,face recognition
  • 相关文献

参考文献9

二级参考文献16

  • 1[1]Michael J Lyons et al. Automatic Classification of Single Facial Images[J].IEEE Trans PAMI, 1999; 21 ( 12 ): 1357~1362 被引量:1
  • 2[2]Lee T S.Image representation using 2D gabor wavelets[J].IEEE TransOn PAMI, 1996; 18(10) :959~971 被引量:1
  • 3[3]Vladimir N Vapnik.The Nature of Statistical Learning Theory[M].Springer, 1995 被引量:1
  • 4[4]E Osuna,R Freund,F Girosi.Training support vector machines:Anapplication to face detection[C].In:Proceedings of CVPR'97,PuertoRico, 1997 被引量:1
  • 5[5]J Platt. Fast training of support vector machines using sequentialminimal optimization[C].In:B Scholkopf,C J C Burges,A J Smola eds.Advances in Kernel Methods---Support Vector Learning,Cambridge,MA,MIT Press, 1999:185~208 被引量:1
  • 6[6]S S Keerthi,S K Shevade,C Bhattacharyya et al.A Fast IterativeNearest Point Algorithm for Support Vector Machine Classifier Design[R].Technical Report TR-ISL-99-03 Intelligent Systems Lab Dept ofComputer Science and Automation Indian Institute of Science Bangalore, India, 1999 被引量:1
  • 7[7]LibSVM.http://www.csie.ntu.edu.tw/~cjlin/libsvm/ 被引量:1
  • 8[8]AT&T Laboratories Cambridge.The Database of Faces.http://www.uk.research.att.com/facedatabase.html 被引量:1
  • 9[9]T Joachims. 11 in: Making large-Scale SVM Learning Practical[C].In:B Scholkopf,C Burges,A Smola ed.Advances in Kernel MethodsSupport Vector Learning,MIT Press,1999 被引量:1
  • 10[10]F Samaria,S Young. HMM based architecture for face identification[J].Imagn and Computer Vision,1994; 12:537~543 被引量:1

共引文献2282

同被引文献95

引证文献11

二级引证文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部