期刊文献+

KICA模型选择及其在消除脑电信号伪差中的应用

KICA Model Selection Method with Application to Removing Artifact from EEG
下载PDF
导出
摘要 理论分析并结合实验验证指出基于正定核的独立分量分析算法(K ICA)的优化与分离性能与其模型参数的选择有关。提出了一种简单高效的模型选择方法:在混合信号中附加一个已知验证信号,通过最小化该已知信号的分离误差来选择最优模型参数。实验结果表明:经模型选择后的K ICA能成功分离脑电信号中的心电伪差。 The impact of model parameters of KICA on its optimization and separation performances is analyzed in theoretical aspects and demonstrated with experiments. In order to select proper model param eters, a time efficient model selection method is put forward, which annexes a simple known signal to the sensor signals and gets optimal model parameter setting by minimizing the separation error. KICA with model selection step is applied to the task of removing ECG artifact from the EEG signal and the result shows KICA works effectively.
出处 《华东理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2006年第4期456-461,483,共7页 Journal of East China University of Science and Technology
基金 国家重点基础研究发展规划项目(2002CB312200) 教育部高校博士点基金项目(20040251010) 国家自然科学基金项目(69974014)
关键词 核独立分量分析(KICA) 模型选择 盲信号分离 脑电信号(EEG) 心电伪差 kernel independent component analysis model selection blind signal separation EEG ECG artifact
  • 相关文献

参考文献11

二级参考文献66

  • 1王行愚,李健.论可拓控制[J].控制理论与应用,1994,11(1):125-128. 被引量:28
  • 2[1]Jutten C, Herault J. Blind separation of source, Part I: An adaptive algorithm based on neuromimetic architecture. SP, 1991, 33∶1 被引量:1
  • 3[3]Xu Y, Yao DZ. A new method for extracting characteristic signal in epileptic EEG. Chinese Journal of Biomedical Engineering(English version), 1999; 8∶41 被引量:1
  • 4[4]Kobayashi K, James CJ, Nakahori T, et al. Isolation of epleptiform discharges from unaverged EEG by independent component analysis. Clinical Neurophysiology, 1999; 110∶1755 被引量:1
  • 5[5]Lee TW, Grolami M, Jbell A, et al. A unifying information-theoretic framework for independent component analysis. Computer and Mathematic with Application. 2000;39∶1 被引量:1
  • 6[6]Comon P. Independent component analysis, a new concept? SP, 1994; 36∶287 被引量:1
  • 7[7]Bell AJ, Sejnowski J. An information maximization approach to blind separation and deconvolution. Neural Comp, 1995; 7∶1129 被引量:1
  • 8[8]Cardoso JF. Infomax and maximum likelihood for blind source separation. IEEE SP Letter, 1997; 4∶112 被引量:1
  • 9[10]Karhunen J, Oja E, Wang L, et al. A Class of neural networks for Independent component analysis. IEEE Trans NN, 1997, 8∶486-503 被引量:1
  • 10[11]Hyv(¨)/(a)rinen A, Oja E. A fast fixed-point algorithm for independent component analysis. Neural Comp, 1997; 9∶1483 被引量:1

共引文献94

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部