摘要
文章利用拉格朗日插值的思想,提出了一种基于椭圆曲线的可防欺诈的动态多密钥共享方案;方案中每个参与者的子密钥可以不受限制的重复使用,因此在更新主密钥的时候,无需更改参与者的子密钥,从而减少了可信中心与参与者之间的通信量;方案可灵活地增删参与者,且安全性是基于椭圆曲线离散对数问题的难解性,因而其安全性比在有限域上更高;方案实现过程中解决了检验子密钥真伪的问题。
Based on the elliptic curve cryptosystem, a multi-key sharing scheme in which the Lagrange interpolation polynomial is used and the cheaters can be detected is presented. The sub keys of participants can be used many times without restriction, and the master key can be renewed without renewing the sub-keys of the participants, reducing the costs of communication between the security center and the participants. The system can accept a new participant or fire a participant freely. The security of the scheme is based on the disperse logarithm of the elliptic curve, so the scheme can improve the security of the keys greatly. The scheme can also check the validity of the sub-keys.
出处
《合肥工业大学学报(自然科学版)》
CAS
CSCD
北大核心
2006年第4期392-394,共3页
Journal of Hefei University of Technology:Natural Science
基金
国家自然科学基金资助项目(NSF60473012)
关键词
拉格朗日插值公式
椭圆曲线
主密钥
子密钥
椭圆曲线离散对数问题
Lagrange interpolation formula
elliptic curve
master key
sub-key
elliptic curve discrete logarithm problem(ECDLP)