期刊文献+

无标记训练样本的Web文本分类方法 被引量:2

The Method of Web Text Classification of Using Non-labeled Training Sample
下载PDF
导出
摘要 在文本分类中获得有类别标记训练样本的代价是很高昂的,本文针对这个问题对传统的模糊聚类方法进行改进,提出模糊划分聚类方法 FPCM,将聚类的无监督性和样本的先验知识结合起来,通过相似度度量聚类相关文本,取得比较客观的簇和少量标记文本,为监督学习找到分类依据,并结合朴素贝叶斯增量学习方式进行分类器的学习。本文进一步用估计分类误差损失的方法平衡选取候选样本,提高了分类准确率,实现了应用范围更加广泛的无标记文本分类学习模型。 Bayes learning theory is to obtain estimate of non-labeled samples by transcendental information and sample data. The application of text classification is to classify non-labeled texts by learning labeled class samples. But it is very difficult to obtain labeled training samples. In the paper the problem is analyzed in point of clustering view. The clustering is a non-supervised learning method, and has a character of independence on defined classes and labeled training samples. The thesis improve on tradition fuzzy clustering to bring forward Fuzzy Partition Clustering Method (FPCM). FPCM is a dynamic clustering method based on centroid technique. A few labeled texts are obtained to find classification foundation for supervised learning by fuzzy Partition clustering non-labeled Web texts. The sample' s transcendental knowledge and clustering's non-supervisory are combined, and correlation texts are clustered by measuring similar degree. Naive Bayes augment learning style is further used to design and learn classifier. At the same time, classification precision is advanced using the way of selecting balance candidate samples after estimating the loss of classifying error. The model of text classifying using non-labeled training sample with more extensive application is realized.
出处 《计算机科学》 CSCD 北大核心 2006年第3期200-201,211,共3页 Computer Science
基金 973国家重点基础研究项目(G1998030414) 北京市优秀人才专项经费资助项目(20042D0501604)
关键词 WEB文本分类 模糊聚类 朴素贝叶斯 Web text classification, Fuzzy clustering, Naive Bayes
  • 相关文献

参考文献7

  • 1Linoff G S,J.a.Berry M.Mining the web,America,2001,348. 被引量:1
  • 2Mena J.Data Mining your website.America,2000,368. 被引量:1
  • 3Wang Shi,Gao Wen.Web data mining.Computer Science,2000,27(4) :237~240. 被引量:1
  • 4Hutter M.Distribution of Mutual Information.In:Proc.of the 14th Intl.Conf.on Neural Information Processing Systems,NIPS-2001. 被引量:1
  • 5边肇祺等编著..模式识别 第2版[M].北京:清华大学出版社,2000:338.
  • 6Keogh E J,et al.Learning Augmented Bayesian Classifiers:A Comparison of Distribution-based and Classification-based Approache,2002 http://citeseer.nj.nec.com/context. 被引量:1
  • 7宫秀军,孙建平,史忠植.主动贝叶斯网络分类器[J].计算机研究与发展,2002,39(5):574-579. 被引量:37

二级参考文献1

  • 1史忠植.知识发现[M].北京:清华大学出版社,2000.. 被引量:7

共引文献36

同被引文献24

  • 1刘远超,王晓龙,刘秉权,钟彬彬.基于聚类分析策略的用户偏好挖掘[J].计算机应用研究,2005,22(12):21-23. 被引量:8
  • 2李宝林,兰芸,张翼英.基于动态遗传算法的用户模型进化研究[J].计算机工程与应用,2006,42(14):200-203. 被引量:7
  • 3乐兵,王明文.基于遗传算法的动态文本聚类[J].江西师范大学学报(自然科学版),2006,30(3):278-281. 被引量:3
  • 4邓健爽,郑启伦,彭宏,邓维维.基于搜索引擎的关键词自动聚类法[J].计算机科学,2007,34(3):162-164. 被引量:2
  • 5Al-Sultan K S,Khan M M.Computational experience on four algorithms for the hard clustering problem[J].Pattern Recognition Letters,1996,17(3),295-308 被引量:1
  • 6Bandyopadhyay S,Saha S.GAPS:A clustering method using a new point symmetry-based distance measure[J].Pattern Recognition,2007,40(12):3430-3451 被引量:1
  • 7Maulik U,Bandyopadhyay S.Genetic algorithm-based clustering technique[J,].Pattern Recognition,2000,33(9),1455-1465 被引量:1
  • 8Chou C-H,Su M-C,Lai E.A new cluster validity measure and its application to image compression[J].Pattern Analysis Applications (Springer London),2004,7(2):205-220 被引量:1
  • 9CHEN Y, LI Z, NIE L, et al. A semi-supervised bayesian network model for microblog topic classification[ C ]//Pro- ceedings of the 24th International Conference on Computa- tional Linguistics. Mumbai, India, 2012: 561-576. 被引量:1
  • 10HA-THUC V, RENDERS J M. Large-scale hierarchical text classification without labelled data [ C ]//Proceedings of the fourth ACM International Conference on Web Search and Data Mining. Hong Kong, China, 2011: 685-694. 被引量:1

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部