期刊文献+

一种基于格理论的数字签名方案 被引量:4

A Digital Signature Algorithm Based on Lattice Theory
下载PDF
导出
摘要 本文介绍了一种建立在解决 NTRU 格(NTRU Lattice)中近似最近向量问题(Appr-CVP)基础上的数字签名方案。与现有的基于解决 Appr-CVP 问题的数字签名方案相比,这种新的数字签名方案通过构造完整的短格基进行签名,在签名与近似最近向量问题之间建立了直接而清晰的关系,因此不需引入任何附加结构,具有更高的安全性。同时,该签名方案引入了适当的扰动,有效地限制了攻击者通过分析大量签名副本所获取的有用信息,具有副本分析免疫性。实验结果表明:该方案不仅安全可靠,而且易于实现。 A digital signature algorithm based on solving the approximate closest vector problem(Appr-CVP)in NTRU- type lattice is proposed in this paper. Superior to the general Appr-CVP based signature schemes which aid some additional structure to make an incomplete linking with Appr-CVP, this new scheme builds a direct and straightforward linkage between signatures and the Appr-CVP in the underlying NTRU lattice through construction of a full short lattice basis, and so is much more safer. At the same time, by introducing carefully chosen perturbations, this new signature scheme can effectiv.ely limit the information that is obtainable from an analysis of a large signature transcript so as to be immune to transcript attacks. Research results show that this new digital signature scheme not only has better security properties, but also can be easily implemented.
出处 《计算机科学》 CSCD 北大核心 2006年第3期93-96,共4页 Computer Science
基金 现代通信国家重点实验室基金(No:51436010202QT2201)
关键词 数论研究组 数字签名 近似最近向量问题 短格基 Lattice,Number theory research Unit(NTRU) ,Digital signature, Approximate closest vector problem(Appr-CVP), Short lattice basis
  • 相关文献

参考文献8

  • 1Daniele Micciancio.Lattice Based Cryptography:A Global Improvement,1999. 被引量:1
  • 2Schnorr C P.A hierarchy of polynomial time lattice basis reduction algorithms.Theoretical Computer Science,1987,53:201 ~224. 被引量:1
  • 3Jacobson N,Basic Algebra I.Second Edition.Freeman W H and Company,1985. 被引量:1
  • 4Goldreich O,Goldwasser S,Halevy S.Public-key cryptography from lattice reduction problems.In:Proc.CRYPTO'97,1997,volume 1294 of LNCS:112~131. 被引量:1
  • 5Goldreich O,Goldwasser S,Halevi S.Challenges for the GGHCryptosystem.Available at:http://theory.lcs.mit.edu/~shaih/challenge.html. 被引量:1
  • 6Gentry C,Jonsson J,Stern J,et al.Cryptanalysis of the NTRU Signature Scheme (NSS).Eurocrypt' 01,Lecture Notes in Computer Science,Springer-Verlag,2001. 被引量:1
  • 7Dinur I,Kindler G,Ssfra S.Approximation CVP to within almostpolynomial factors is NP-hard.39th Annual Symposium on Foundations of Computer Sicence,Palo Alto,California,1998. 被引量:1
  • 8Goldreich O,Micciancio D,Safra S,et al.Approximating shortest lattice vectors is not harder than approximating closest lattice vectors:[technical reports].Electronic Colloquium on Computational Complexity,ECCC,1999. 被引量:1

同被引文献14

引证文献4

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部