摘要
在郭普照先生提出的“理想折合奇数组轴”和“3×5×…×Pk阶循环节”[1]的基础上,建立了理想筛原理,即:若(m,n)=1,即m与n互素,且m阶循环节中有s个“○”位,t个“●”位,s+t=m,则在理想折合奇数组轴上连续n个m阶循环节中,不论始点从何处算起,m个n的倍数落在“○”位上的恰好有s个,落在“●”位上的恰好有t个.然后推出了定理5.1,5.2,5.3,5.4.并推出了定理6.1,6.2,6.3,6.4和表2以及定理7.1,7.2,7.3,7.4,8.1,9.1和表2.其中定理8.1就是“1+1”定理,而定理9.1的内容更上了一个平台.
On the basis of ideal equivalent odd array axis proposed by Mr. Guo Pu - znao ana 3×5×…Pk th - order loop body,an ideal sieve principle was put forth,i, e. ,if(m,n) = 1, i.e. ,m and n are a prime pair, and an mthorder loop body has s О positions, and t● positions, and s + t = m, then in n continuous mth -order loop bodies on the ideal equivalent odd array axis,despite the starting points,of m n multiples, exactly s and t multiples will fall in О positions and ● positions respectively. Then theorems 5.1,5.2,5.3 and 5.4 were derived, together with theorems 6.1,6.2,6.3,6.4,7.1,7.2,7.3,7.4,8.1,9.1 and Table 2, where theorem 8.1 is the so-called ‘1 + 1' theorem and theorem 9.1 is at a higher level,
出处
《西安文理学院学报(自然科学版)》
2006年第1期69-78,共10页
Journal of Xi’an University(Natural Science Edition)