期刊文献+

关于余辛流形的半不变子流形的一个不等式

A Basic Inequality of Semi-Invariant Submanifolds in Cosymplectic Space Forms
下载PDF
导出
摘要 对余辛流形的半不变子流形进行研究,利用曲率的分量表示之间的简单的代数关系,得到了这类子流形的R icc i曲率与平均曲率平方之间的一个不等式,并讨论了等式成立的充分必要条件. To find simple relationship between main extrinsic invariant and main intrinsic invariants of a submanifold is one of the natural interests in submanifold theory. In the present paper, a sharp inequality is obtained between the Ricci curvature and the squared mean curvature of semi-invariant submanifolds in cosymplectic space forms, and some conditions are reached to make the equality hold.
出处 《大连铁道学院学报》 2006年第1期8-10,共3页 Journal of Dalian Railway Institute
关键词 余辛流形 半不变子流形 RICCI曲率 平均曲率 cosympleetie manifold semi-invariant submanifold Ricci curvature mean curvature.
  • 相关文献

参考文献4

  • 1CHEN B Y.On Ricci curvature of isotropic and Lagrangian submanifolds in the complex space forms[J].Arch.Math.2000,74:154-160. 被引量:1
  • 2CHEN B Y,Some pinching and classification theorems for minimal submanifolds[J].Arch.Math.1993,60:568-578. 被引量:1
  • 3LIU XIMIN,On Ricci curvature of C-totally real submanifolds in Sasakian space forms[J].Proc.Indian Acad.Sci(Math.Sci),2001,111(4):339-405. 被引量:1
  • 4BLAIR D E.Contact manifolds in Riemannian geometry[M].Springer Verlag,Berlin-New York,1976. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部