期刊文献+

基于点云数据重构三维网格模型的神经网络法 被引量:2

Neural network method of reconstructed 3D network model in reverse engineering based on data of point clouds
下载PDF
导出
摘要 给出了一种新的基于神经网络的点云数据重构CAD实体模型的新方法。该方法能直接从神经网络的权值矩阵得到曲线的控制顶点、曲面的控制网格,通过神经网络的权值约束实现曲线段、曲面片之间的光滑拼接。同时对恢复的隐式表面的初始逼近网格自适应性进行优化。利用该方法恢复的网格形状,无论在表面还是在隐式曲面的轮廓部分都能获得很好的视觉效果。所有算法的时间复杂度均为O(n),可以完全实时进行。 A kind of new method for reconstructing the CAD entity model of point cloud data based on neural network was presented in this paper. This method could obtain the controlling vertex of curve / controlling mesh of curved surface directly from weight value matrix of neural network, and through the weight value restraint of neural network to realize a smooth connection between curve segments and pieces of curved surface. At the same time the self-adoption optimization was carried out on the being restored primarily approached mesh of implicit surface. Using this method, the being restored shapes of meshes would all obtain a good effect of visual sense no matter on the surface or on the profile part of implicit curved surface. The time complexity degrees of all algorithms are O(n), and all the algorithms can be carried out completely in real-time.
出处 《机械设计》 CSCD 北大核心 2006年第4期14-15,56,共3页 Journal of Machine Design
基金 国家自然科学基金资助项目NSFC(60173046)
关键词 光顺 神经网络 反求工程 点云 fairing neural network reverse engineering point cloud
  • 相关文献

参考文献7

二级参考文献14

共引文献75

同被引文献11

引证文献2

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部