期刊文献+

Passive Target Tracking in Non-cooperative Radar System Based on Particle Filtering

Passive Target Tracking in Non-cooperative Radar System Based on Particle Filtering
下载PDF
导出
摘要 We propose a target tracking method based on particle filtering(PF) to solve the nonlinear non-Gaussian target-tracking problem in the bistatic radar systems using external radiation sources. Traditional nonlinear state estimation method is extended Kalman filtering (EKF), which is to do the first level Taylor series extension. It will cause an inaccuracy or even a scatter estimation result on condition that there is either a highly nonlinear target or a large noise square-error. Besides, Kalman filtering is the optimal resolution under a Gaussian noise assumption, and is not suitable to the non-Gaussian condition. PF is a sort of statistic filtering based on Monte Carlo simulation that is using some random samples (particles) to simulate the posterior probability density of system random variables. This method can be used in any nonlinear random system. It can be concluded through simulation that PF can achieve higher accuracy than the traditional EKF. We propose a target tracking method based on particle filtering(PF) to solve the nonlinear non-Gaussian targettracking problem in the bistatic radar systems using external radiation sources. Traditional nonlinear state estimation method is extended Kalman filtering (EKF), which is to do the first level Taylor series extension. It will cause an inaccuracy or even a scatter estimation result on condition that there is either a highly nonlinear target or a large noise square-error. Besides, Kalman filtering is the optimal resolution under a Gaussian noise assumption, and is not suitable to the nonGaussian condition. PF is a sort of statistic filtering based on Monte Carlo simulation that is using some random samples (particles) to simulate the posterior probability density of system random variables. This method can be used in any nonlinear random system. It can be concluded through simulation that PF can achieve higher accuracy than the traditional EKF.
作者 李硕 陶然
出处 《Defence Technology(防务技术)》 SCIE EI CAS 2006年第1期53-56,共4页 Defence Technology
基金 SponsoredbyNationalNaturalScienceFoundationofChina(60232010)andTeachingandResearchAwardforOutstandingYoungTeachersinHigherEducationInstitutionsofMinistryofEducationofChina
关键词 雷达 滤波 目标跟踪 表面辐射 passive radar system target tracking particle filtering
  • 相关文献

参考文献7

  • 1Chernyak,VictorS.Fundamentalsofmultisiteradar systems:Multistaticradarsandmultiradarsystems[]..1998 被引量:1
  • 2RisticB,SanjeavM,ArulamPalam.Trackingamaneu veringtargetusingangle onlymeasurement:algorithms andperformance[].Signal Processing.2003 被引量:1
  • 3YaakovBar Shalom,LIXiao rong.Estimationand tracking:principles,techniques,andsoftware[]..1993 被引量:1
  • 4YANGZhen qi,etal.Bistatic(multistatic)radarsys tems[]..1998 被引量:1
  • 5SimonMaskell,NeilGordon.Atutorialonparticlefilters foron linenonlinear/non GaussianBayesiantracking[].IEEETransonSignalProcessing.2001 被引量:1
  • 6NiclasBergman.RecursiveBayesianestimation,naviga tionandtrackingapplications[]..1999 被引量:1
  • 7LIShuo.Researchonseveraltargetdetectionproblems byutilizingnon cooperativeradiateopportunities[]..2002 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部