期刊文献+

一种模糊人工神经网络控制器的设计与研究 被引量:1

Designing and Researching for a FANNC
下载PDF
导出
摘要 模糊控制与人工神经网络控制有许多相似之处,如何最大程度地发挥这两种控制的优点是一个很重要的问题。本文利用模糊控制算法快速、简便的优点弥补了人工神经网络算法复杂、缓慢的缺点,利用神经元特征函数使模糊控制更容易处理,以此为基础研制出一种模糊人工神经网络控制器(简称FANNC).通过仿真验证了该FANNC的合理性,其控制效果明显优于文献[8]的控制效果。同时,也表明模糊控制是一种特殊的人工神经网络控制,二者是一致的,其学习和训练可以用相同的方法来进行,这对二者的统一处理很有价值。 Fuzzy control is similar to artificial neural network control on many aspects. It is very important to exert their advantages. This paper uses the high-speed and concise properties of fuzzy control to make up the low-speed and complexities of artificial neural network. On the other hand, neural activation function makes it easy to deal with fuzzy control. Based on these advantages,a new fuzzy artificial neural network controller (FANNC) is designed. Its reasonableness is verified by simulation. The simulation results of FANNC are superior to literature[8]. Also, this paper shows that fuzzy control is a kind of special artificial neural network, they can be trained in the same way. It is very valuable for united dealing with both of them.
出处 《电子学报》 EI CAS CSCD 北大核心 1996年第10期42-45,共4页 Acta Electronica Sinica
关键词 模糊控制 模糊语言 隶属度 BP算法 神经网络 Fuzzy control, Fuzzy language, Membership, Neural activation function, Self-organizing,BP algorithm, Artificial neural network
  • 相关文献

参考文献3

二级参考文献2

  • 1应行仁,模式识别与人工智能,1990年,3卷,29页 被引量:1
  • 2应行仁,模糊数学,1982年,4卷,1页 被引量:1

共引文献48

同被引文献16

  • 1T G Barbounis,J B Theocharis.A locally recurrent fuzzy neuralnetwork with application to the wind speed prediction usingspatial correlation. Neurocomputing . 2007 被引量:1
  • 2H Jaeger.The"Echo State"Approach to Analyzing and Train-ing Recurrent Neural Networks. GMD Report148 . 2001 被引量:1
  • 3M Lukosevieius,H Jaeger.Reservoir computing approaches torecurrent neural network training. Computer Science Re-views . 2009 被引量:1
  • 4Yanbo Xue,Le Yang,Simon Haykin.Decoupled echo statenetworks with lateral inhibition. Neural Networks . 2007 被引量:1
  • 5Y Zhang,,W Li.Gegenbauer orthogonal basis neural networkand its weights-direct-determination methods. Electronics Letters . 2009 被引量:1
  • 6H Jaeger,M Lukosevicius,D Popovici,Udo Siewert.Opti-mization and applications of echo state networks with leaky-integrator neurons. Neural Networks . 2007 被引量:1
  • 7Jaeger H.Tutorial on training recurrent neural networks, covering BPTT, RTRL, EKF and "echo state networks" approach. GMD Report 159 . 2002 被引量:1
  • 8M.Sugeno.Fuzzy Control. . 1988 被引量:1
  • 9D.Graves,W.Pedrycz.Fuzzy prediction architecture using recurrent neural networks. Neurocomputing . 2009 被引量:1
  • 10GAO Y,ER M J.NARMAX Time Series Model Prediction:Feed-forward a-nd Recurrent Fuzzy Neural Network Approaches. Fuzzy Sets and Syste-ms . 2005 被引量:1

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部