摘要
借助Mathematica软件,在Backlund变换的基础上采用多线性变量分离(MLVS)方法,得到了(2+1)维修正Veselov-Novikov系统的一个含低维任意函数的新的精确解.选取合适的多值函数,构造出新型的折叠子,对其进行了分类并且研究了各种类型的二折叠子之间的完全弹性碰撞.另外还给出了折叠子与隐形折叠子的相互作用.最后把MLVS方法推广到一个新的(1+1)维非线性系统.
By using Mathematica and multi-linear variable separation (MLVS) approach which is based on the Baecklund transformations, a new exact solution which include low dimensional arbitrary functions of the (2 + 1 )-dimensional modified Veselov-Novikov system is obtained. Two new foldons are constructed and their entirely elastic interactions are considered. In additon, foldon and ghoston interactions are derived. MLVS approach is also extended to solve a new (1 + 1 )-dimensional nonlinear system.
出处
《物理学报》
SCIE
EI
CAS
CSCD
北大核心
2006年第4期1548-1554,共7页
Acta Physica Sinica
基金
国家自然科学基金(批准号:10501040)资助的课题.