摘要
“数列xnm^rnm+p审敛原理”,是数列柯西审敛原理的等价命题.采用“数列xnm^rnm+p审敛原理”判别数列(或数项级数)的敛散性比采用柯西审敛原理更便捷;“数列xnm^rnm+p审敛原理”推广了已有的判别数列(或数项级数)敛散性法则,扩大了已有的判别数列(或数项级数)敛散性法则的应用范围.
A equivalence theorem of Cauchy's convergence principle for sequence xnm~rnm+p is given. The convergence principle for the sequence xnm~rnm+p is more convenient than Cauchy's coinvergence principle in judging a sequence or a series of numbers convergent or not. It extends the existing convergence principles for a sequence or a series of numbers, and enlarges the range of the application of the existing convergence principles.
出处
《数学的实践与认识》
CSCD
北大核心
2006年第3期292-294,共3页
Mathematics in Practice and Theory
关键词
数列
子列
收敛
sequence
sub-sequence
convergence