期刊文献+

基于神经网络的电子邮件分类与过滤 被引量:5

E-mail classification and filtering based on neural network
下载PDF
导出
摘要 现在电子邮件的应用非常广泛,已经成为人们生活中一种重要的通讯手段,但各种各样的垃圾邮件也是令我们十分困扰的问题,给出了一种电子邮件的分类过滤方法。电子邮件作为一种半结构化的文档,电子邮件信息包含了固定的语法部分和一定长度的可变文本部分,同时处理这两部分以得到更高的准确度。首先对邮件进行文本处理,得到特征向量;然后使用基于神经网络的方法对邮件进行分类过滤得到邮件分类器;最后通过实验验证分类器的有效性。 Now electronic mail (E-mail) is widely used, Which has become one of the most important forms ofcommtmication available, atthesametimejunkmailisquicklybecomingaseriousproblem. An E-mail classifying and filtering method is given. Modeled as semistructured documents, E-mail messages consist of a set of fields with predefined semantics and a number ofvariable length free-text fields. By dealing with both of them, higher accuracy is obtained. First, E-mail is dealt with and features vector are got. Then method based on neural network is used to classify and filter personal E-mails. The result showed that the classifier can perform filtering with reasonable accuracy.
作者 任劼 项婧
出处 《计算机工程与设计》 CSCD 北大核心 2006年第6期1021-1024,1064,共5页 Computer Engineering and Design
关键词 电子邮件 分类 过滤 神经网络 文本处理 特征向量 E-mail classification filter neural network text processing feature vector
  • 相关文献

参考文献8

  • 1高隽编著..人工神经网络原理及仿真实例[M].北京:机械工业出版社,2003:209.
  • 2Sahami M,Dumais S,Heckerman D,et al.A bayesian approach to filtering junk E-mail[M].Proc AAAI Workshop Learning for Text Categorization,1998. 被引量:1
  • 3Yanlei Diao,Hongjun Lu,Dekai Wu.A comparative study of classification based personal E-mail filtering[A].The Fourth Pacific-Asia Conference on Knowledge Discovery and Data Mining[C].2000.408-419. 被引量:1
  • 4Xavier Carreras.Boosting trees for anti-spam email filtering[A].Proceedings of RANLP-01,4th International Conference on Recent Advances in Natural Languages Processing[C].2001. 被引量:1
  • 5Kolmogorov.On the representation of continuous functions of many variables by superposition of continuous functions of one variable and condition[M].USSR:Dokl Akad Nauk,1957.953-956. 被引量:1
  • 6Nielsen R H.Theory of the back propagation neural network[M].Proc of I.JCNN,Vol 1,1989.2593-2605. 被引量:1
  • 7袁曾任.人工神经网络及其应用[M].北京:清华大学出版社,2003.30-31. 被引量:3
  • 8王科明,杨建刚,周炜彤.利用人工神经网络技术预测期货行情[J].计算机工程与设计,2004,25(7):1164-1166. 被引量:12

二级参考文献7

共引文献12

同被引文献27

引证文献5

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部