期刊文献+

一些由它的Laplacian谱确定的树 被引量:13

Some Trees are Determined by Their Laplacian Spectra
下载PDF
导出
摘要 探讨了“哪些图由它的Laplacian谱确定?”的问题.利用同谱图的线图的特点,证明了一些特殊结构的树,如梳图,烷的一个同分异构体的分子图,恰有两个Laplacian特征值大于2的树(包括双星图)等,各自由它们的Laplacian谱确定. The question "which graphs are determined by their spectra?" is discussed. By using the properties of cospectral graphs, it is proved that some trees with special structure, such as comb, a kind of molecular graph of alkyl, trees with exactly two eigenvalue greater than 2 (include double-star) ,et, are determined by their Laplacian spectra, respectively.
出处 《湖南师范大学自然科学学报》 EI CAS 北大核心 2006年第1期21-24,46,共5页 Journal of Natural Science of Hunan Normal University
基金 国家自然科学基金资助项目(10471037) 湖南省教育厅科学研究基金资助项目(03B019)
关键词 图谱 同谱图 特征值 LAPLACIAN谱 spectrum of a graph cospectral graphs eigenvalue Laplacian spectrum
  • 相关文献

参考文献2

二级参考文献25

  • 1[1]Berman, A. & Plemmons, R. J., Nonnegative Matrices in the Mathematical Sciences, Academic, 1979,SIAM, 1994. 被引量:1
  • 2[2]Bondy, J. A. & Murty, U. S. R., Graph Theory with Applications, American Elsevier Publishing Co.,New York, 1976. 被引量:1
  • 3[3]Cvetkovic, D., Doob, M. & Sach, H., Spectra of Graphs-Theory and Applications, Academic Press,New Work, 1980. Third edition, 1995. 被引量:1
  • 4[4]Grone, R., Merris, R. & Sunder, Ⅴ., The Laplacian spectrum of a graph, SIAM J. Matrix Analysis and its Applications, 11(2000), 218-238. 被引量:1
  • 5[5]Guo, J. & Wang, T., A relation between the matching number and Laplacian spectrum of a graph,Linear Algebra and its Applications, 325(2001), 71-74. 被引量:1
  • 6[6]Getman, Ⅰ., Babic, D. & Gineityte, Ⅴ., Degeneracy in the equivalent bond orbital model for high energy band in the photoelectron spectra of saturated hydrocarbons, ACH Models in Chemistry, 135(1998),901-909. 被引量:1
  • 7[7]Getman, Ⅰ., Gineityte, Ⅴ., Lepovic, M. & Petrovic, M., The high-energy band in the photoelectron spectrum of alkanes and its dependence on molecular structure, J. Serb. Chem. Soc., 64(1999), 673-680. 被引量:1
  • 8[8]Li, J. S. & Pan, Y. L., A note on the second largest eigenvalue of the Laplacian matrix of a graph,Linear and Multilinear Algebra, 48(2000), 117-121. 被引量:1
  • 9[9]Merris, R., The number of eigenvalues greater than two in the Laplacian spectrum of a graph, Portugal.Math., 48(1991), 345-349. 被引量:1
  • 10[10]Merris, R., Laplacian matrices of graphs: a survey, Linear Algebra and its Applications, 197-198(1994), 143-176. 被引量:1

共引文献5

同被引文献101

  • 1苏晓艳.图W由它的Laplacian谱确定[J].青海师范大学学报(自然科学版),2009,25(2):19-21. 被引量:1
  • 2沈小玲,张远平.星图和最大度为3的似星树由它们的Laplacian谱确定[J].湖南师范大学自然科学学报,2005,28(1):17-20. 被引量:5
  • 3Dragos Cvetkovic M, Michael Doob, Horst Sachs. Spectra of graphs: theory and applications[ M]. Heidelberg; Leipzig: Barth, 1976. 被引量:1
  • 4Van Dam E R, Haemers W H. Which graphs are determined by their spectrum[J]. Linear Algebra Appl, 2003, 373: 241-272. 被引量:1
  • 5Doob M, Haemers W H. The complement of the path is determined by its spectrum[J]. Linear Algebra Appl, 2002, 356: 57 -65. 被引量:1
  • 6Oliveira C S, Deabreu N M M, Jurkiewilz S. The characteristic polynomial of the Laplacian of graphs in (a, b)- linear classes [J]. Linear Algebra Appl, 2002, 356: 113-121. 被引量:1
  • 7Kelmans A K. The number of trees of a graph[J]. Automat i Telemah, 1965, 26: 2154-2204. 被引量:1
  • 8Kelmans A K. The number of trees of a graph Ⅱ [ J]. Automat i Telemah, 1966, 27: 56-65. 被引量:1
  • 9Kelmans A K. Characteristic polynomial and the number of spanning trees of graphs and their optimization [ D]. Lectrures at the All-union Workshop on Graph Theory, Vaivary , Latviiskiy Gos Universitet, 1972. 被引量:1
  • 10Kelmans A K , Chelnokov V M. A certain polynomial lof a graph and graphs with an extremal numbers of trees[J]. J Combin Theory (Ser B ), 1974, 16: 197-214. 被引量:1

引证文献13

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部