摘要
Linear and nonlinear evolutions of TS wave and high-order harmonic waves in boundary layers are studied based on the parabolic stability equation (PSE). Initial conditions are derived by the local method with the Landau expansion. The evolution process and characteristics of the disturbance amplitude and the velocity profile, etc. , especially stronger nonlinear effects, are computed by an efficient numerical method. Effects and regulations of different initial amplitudes, frequencies and pressure gradients on the evolution of disturbances are explored, which are directly relative to the stability and the transition in boundary layers. Simulation results are in good agreement with the data of the accuracy direct numerical simulation (DNS) using full Navier-Stokes equations.
基于抛物化稳定性方程,研究了边界层中TS波及其高阶谐波的线性和非线性演化问题。由局部法和Landau展开式导出初始条件,并计算了扰动幅值和速度型等的演化过程和特征,特别是非线性的重要作用。探讨了初始幅值、压力梯度、扰动频率对扰动演化的影响及其规律,这与边界层的稳定性和转捩研究紧密相关。算例结果与全Navier-Stokes方程的直接数值模拟结果一致。
基金
教育部博士点科研基金(20030287003)资助项目~~