期刊文献+

利用多尺度分析和编组的基于目标的注意计算模型 被引量:5

A Computational Model of Object-Based Attentionusing Multi-scale Analysis and Grouping
下载PDF
导出
摘要 模拟生物视觉感知提出一种基于目标的注意计算模型,主要用到两个关键技术:多尺度分析和编组.用于多尺度分析的微分算子从原始图像中提取重要边缘,随后源于格式塔知觉组织规则的轮廓编组过程将边缘组织成感知目标.注意焦点按照各目标显著程度递减的顺序在目标间转移,目标显著程度由边缘重要性、区域对比度和轮廓闭合性共同决定.该模型考虑了目标的独立性和完整性,因此比基于空间的注意有更高的检测精度.多尺度分析为轮廓编组提供了候选边缘,从而提高了编组的效率.对多类自然图像的实验验证了该模型计算上的高效性和生物学上的合理性. Recent biological experiments have presented increasing evidence for object-based attention. We propose a computational model of object-based attention to simulate biological perception. Two techniques are employed: multi-scale analysis and grouping. Differential geometry descriptor in multi-scale analysis extracted important edges from source images and subsequent contour grouping process organized the edge image into perceptual objects. The later process originated from Gestalt laws. Then focus of attention shifted among objects in order of conspicuousness, which was measured by edge saliency, region contrast and topological property of closure. The proposed model exhibits several advantages. It considers integrality of objects and thus gains higher searching accuracy than space-based attention. It uses multi-scale analysis to select candidates and thus improves efficiency of contour grouping, Experiments on different types of images show high efficiency and biological plausibility of our model.
出处 《电子学报》 EI CAS CSCD 北大核心 2006年第3期559-562,共4页 Acta Electronica Sinica
基金 国家自然科学基金(No.60373029) 北京市重点学科共建项目
关键词 生物视觉感知 多尺度分析 编组 基于目标的注意 biology perception multi-scale analysis grouping object-based attention
  • 相关文献

参考文献10

  • 1Chen L,Zhang S,Srinivasan M V.Global perception in small brains:Topological pattern recognition in honey bees[J].Proc of the American National Academy of Sciences,2003,100 (11):6884-6889. 被引量:1
  • 2Palmer S E.Vision Science:Photons to Phenomenology[M].London:The MIT Press,1992.254-285. 被引量:1
  • 3Rybak I A,Gusakova V I,et al.A model of attentionguided visual perception and recognition[J].Vision Research,1998,38:2387-2400. 被引量:1
  • 4Itti L,Koch C.Computational modeling of visual attention[J].Nature Reviews Neuroscience,2001,2 (3):194-203. 被引量:1
  • 5Opie J.Gestalt theories of cognitive representation and processing[J].Psycoloquy,1999,10 (021). 被引量:1
  • 6Sun Y,Fisher R.Object-based visual attention for computer vision[J].Artificial Intelligence,2003,146 (1):77-123. 被引量:1
  • 7Deng Y,Manjunath B.Unsupervised segmentation of color-texture regions in images and video[J].IEEE Trans Pattern Analysis and Machine Intelligence,2001,23(8):800-810. 被引量:1
  • 8Hoogs A,Mundy J.An integrated boundary and region approach to perceptual grouping[A].15th Int'l Conf Pattern Recognition[C].Barcelona,Spain,2000,1:284-290. 被引量:1
  • 9Lindeberg T.Edge detection and ridge detection with automatic scale selection[A].IEEE Conf on Computer Vision and Pattern Recognition[C].San Francisco,CA,1996.465-470. 被引量:1
  • 10Zou Q,Luo S.Selective attention guided perceptual grouping model[A].Wang Lipo,Chen ke.Advances in Natural Computation,Int'l Conf on Natural Computation,Lecture Notes in Computer Science[C].Springer-verlag,Hunan,China,2005,3610:867-876. 被引量:1

同被引文献46

引证文献5

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部