摘要
设K是实Banach空间E中的有界邻近子集,多值映象T1,T2:K→2K是广义一致L-L ipsch itz的渐近Φ-半压缩映象,且T1一致连续.证明了具误差的Ish ikaw a型迭代集合序列强收敛到T1,T2的公共不动点集.同时,证明了当T:K→2K是一致连续的广义L ipsch itz强增生算子时,具误差的Ish ikaw a型迭代列强收敛到方程Tx=f的解.
Let K be a bounded proximinal subset of a real Banach spaces E and T1 ,T2 :K→2^K be generalized uniformly L-Lipschitz and multivalued asymptotically Ф-hemicontractive map- pings and T1 be a uniformly continuous. It is shown that the set iterative sequences of the Ishikawa type with errors converges strongly to common fixed point set of T1, T2. Meanwhile,it proves the Ishikawa type sequence with errors converges strongly to the solution of the equation Tx=f if T is a generalized Lipschitz and strongly accretive operator and an uniformly continuous.
出处
《纯粹数学与应用数学》
CSCD
北大核心
2006年第1期62-68,75,共8页
Pure and Applied Mathematics
基金
广东省自然科学基金(020163)