期刊文献+

任意多人的量子博弈 被引量:5

Multiplayer quantum game with continuous-variable strategies
下载PDF
导出
摘要 量子博弈是量子信息学最近兴起的又一分支。杜江峰等在研究连续变量量子博弈中,利用了双模压缩态实现量子纠缠并产生优于经典的结果。我们在此基础上对于有任意多个参与者并且策略为连续的量子博弈做了研究。通过利用一多模光场,该光场是由各个光模之间两两互相纠缠形成的。利用这个方案上述结论可以推广至任意多个参与者。并且,随着纠缠度的增加他们的总收益也增加,当每一对双模光场达到最大纠缠时, 他们的总收益亦将最大。 Quantum games has becoming a new arisen branch of the quantum information. Du etc. utilize a two mode electromagnetic fileds in discussing the continuous-variable quantum games. From the model, they realized the entanglement in the game which might lead superior consults than the coresponding classical games. A multiplayer quantum game that the players can access to a continuous set of strategies is studied. By utilizing a kind of multi-mode electromagnetic fileds and let every two mode of the fields entangled pairwise. We discovered, base on this scheme, the conclusion above could be extended to arbitrary number of participators. With the increasing of entangle parameter, The sum of the profits will also increase monotonously. When each two-mode electromagnetic fileds entangle to maximum, i.e. EPR state, they will also attain highest profits.
出处 《量子电子学报》 CAS CSCD 北大核心 2006年第2期173-177,共5页 Chinese Journal of Quantum Electronics
基金 中国国家基础研究计划资助项目(2001CB309300)
关键词 量子信息 量子博弈 多人博弈 量子纠缠 连续变量 quantum information quantum game multiplayer game quantum entanglement continuous-variable
  • 相关文献

参考文献17

  • 1Meyer D A. Quantum strategies [J]. Phys. Rev. Lett., 1999, 82: 1052. 被引量:1
  • 2Eisert .J, et al. Quantum games and quantum strategies [J]. Phys. Rev. Lett., 1999, 83: 3007. 被引量:1
  • 3Chen J L, et al, Noisy quantum game [J], Phys. A, 2002, 65: 052320. 被引量:1
  • 4Johnson N F. Playing a quantum game with a corrupted source [J]. Phys. Rev. A, 2001, 63: 020302. 被引量:1
  • 5Benjamin S C, Hayden P M, Multiplayer quantum games [J]. Phys. Rev. A, 2002, 64: 030301. 被引量:1
  • 6Li Hui, Du Jiangfeng, Serge Massar. Continuous-variable quantum games [J]. Phys. Lett. A, 2002, 306: 73-78. 被引量:1
  • 7Li Hui, et al. Quantum games of asymmetric in formation [J]. Phys. Rev. E, 2003, 68: 016124. 被引量:1
  • 8Iqbal H, Toor A , Backwards-induction outcome in a quantum game [J], Phys, Rev. A, 2002, 65: 052328. 被引量:1
  • 9Plitney A, Abbott D. Quantum version of the monty hall problem [J]. Phys. Rev. A, 2002, 65: 062318. 被引量:1
  • 10Iqbal A, Toor A H. Quantum mechanics gives stability to a Nash equilibrium [J]. Phys. Rev. A, 2002, 65: 022306. 被引量:1

二级参考文献1

  • 1MONROE C MEEKHOFDM etal.A‘Schrodingercat'' superposition state of an atom [J].Science,1996,272:1130-1130. 被引量:1

共引文献1

同被引文献42

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部