期刊文献+

不确定性闭环系统特征上下界的二阶摄动法 被引量:1

Upper and lower bounds of eigenvalues of uncertain closed-loop systems with second-order perturbation
下载PDF
导出
摘要 用凸模型理论讨论了参数不确定系统的振动控制问题,把不确定系统的振动控制转化为确定性问题来处理。讨论了不确定参数对闭环系统特征值的影响,提出了闭环系统特征值上下界的二阶摄动估计的计算方法,并通过数值算例证明了该方法的有效性。 By using the convex model theory, the vibration control problem of structures with uncertain parameters is discussed, which is approximated by a deterministic one. The uncertain parameters are modeled to be a convex elliptical set rather than a probabilistic set. This does not require the probabilistic distribution descriptions of the uncertain parameters. The feedback gain matrices derived from the deterministic systems are applied to the actual uncertain systems, and a method for estimating the upper and lower bounds of the real and imaginary parts of eigenvalues of the closed-loop systems is presented by combining the second-order matrix perturbation and optimization. The numerical results show that the present method is effective.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2006年第B03期56-61,共6页 Journal of Jilin University:Engineering and Technology Edition
基金 国家自然科学基金资助项目(10202006)吉林大学"985工程"资助项目
关键词 工程力学 参数不确定系统 振动控制 凸模型理论 二阶摄动 闭环系统特征值上下界 engineering mechanics uncertain parameters systems vibration active control convex model second-order matrix perturbation upper and lower bounds of eigenvalues of the closed-loop systems
  • 相关文献

参考文献2

二级参考文献15

  • 1[1]Inman, Daniel J. Vibration with Control, Measure-ment, and Stability[M]. New Sersey: Prentice-Hall, Inc., 1989. 被引量:1
  • 2[2]Meirovitch L.Dynamics and Control[M].New York: Wiley, 1990. 被引量:1
  • 3[3]Maghami P G, Juang J N. Efficient eigenvalue assi-gnment for large space structures[J]. Journal of Guidance, Control and Dynamics, 1990,13(6):1033-1039. 被引量:1
  • 4[4]Chen Y D, Chen S H, Liu Z S. Modal optimalcontrol procedure for near defective systems[J]. Journal of Sound and Vibration, 2001,245(1):113-132. 被引量:1
  • 5[5]Chen Y D, Chen S H, Liu Z S. Quantitative measures of modal controllability and observability for the defective and near defective systems[J]. Journal of Sound and Vibration, 2001,248(3):413-426. 被引量:1
  • 6[6]Chen Jiawen, Cheng Jinshing, Hsieh Jerguang. Tra-cking control for uncertain nonlinear dynamical systems described by differential inclusions[J]. Journal of Mathematical Analysis and Applications,1999,236(2):463-479. 被引量:1
  • 7[7]Marc Quincampoix, Nicolas Seube. Stabilization ofuncertain control systems through piecewise constant feedback[J]. Journal of Mathematical Analysis and Applications, 1998,218(1):240-255. 被引量:1
  • 8[8]Ferrara A, Giacomini L. Control of class of mechanical systems with uncertainties via a constructive adaptive/second order VSC approach[J]. Journal of Dynamic Systems, Measurement, and Control, 2000,122(1):33-39. 被引量:1
  • 9[9]Sobld K M, Banda S S, Yeh H M. Robust control for linear systems with structural state space uncertainty[J]. Int J Control, 1989,50(5):1991-2004. 被引量:1
  • 10[10]Rachid A. Robustness of discrete systems under structural uncertainties[J]. Int J Control,1989,50(4):1563-1566. 被引量:1

共引文献22

同被引文献13

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部