期刊文献+

因果图参数的在线学习 被引量:2

Online Learning of Causality Diagram Parameters
下载PDF
导出
摘要 因果图理论是利用图形化和直接因果强度来表达知识和因果关系的一种基于概率论的推理方法,能够进行在线动态推理和对复杂系统进行故障诊断,连接强度是其推理的基础,文中给出了采用EM(η)算法在线学习因果图参数(连接强度)的方法,使学习出的参数能适应环境的变化,具有适时性.同时在理论上证明了这种方法的可行性和优点. Causality diagram theory is a methodology based on probability, which adopts graphical expression of knowledge and direct causal intensity of causality, it can progress dynamic reasoning online and fault diagnosis for complex system. Linkage intensity is the basis of the inference. The algorithm of EM(η) is proposed to learn causality diagram parameters (linkage intensity), which can make the parameters adapt with the change of environment. The authors also prove the feasibility and advantage in theory.
作者 王洪春
出处 《重庆大学学报(自然科学版)》 EI CAS CSCD 北大核心 2006年第3期84-86,共3页 Journal of Chongqing University
基金 重庆市高等学校优秀中青年骨干教师资助项目(渝教人2005.02) 重庆市科技攻关资助项目(5990)
关键词 因果图 信度网 连接强度 EM(η)算法 causality diagram belief network linkage intensity EM(η) algorithm
  • 相关文献

参考文献6

  • 1ZHANG QIN. Probabilistic Reasoning Based on Dynamic Causality Tree/Diagrams [ J ]. Reliability Engineering and System Safety, 1994,46 (3) : 209 - 220. 被引量:1
  • 2ZHANG QIN. A Continuous Possibility Propagation Diagram Approach for Reasoning Under Uncertainty, Proceedings of the IEEE International Conference on System [ J ]. Man and Cybernetics, 1996 IEEE, Piscataway NJ USA, 96CH35929,1996, 2:1 426- 1 429. 被引量:1
  • 3ZHANG QIN, AN XUEGAO, GU JIN, et al. Application of FBOLES-A Prototype Expert System for Fault Diagnosis in Nuclear Power Plants [ J ]. Reliability Engineering and System Safety, 1994, 44(3) :225 -235. 被引量:1
  • 4JUDEA. Pearl, Fusion, Propagation, and Structuring in Belief Networks [ J ]. Artificial Intelligence, 1986, 29 ( 2 ) :241 - 288. 被引量:1
  • 5DEMPSTER A. Maximum Likelihood form Incomplete Data Via the EM Algorithm [ J ]. Journal of the Royal Statistical Society, 1977,39 (B) : 1 - 38. 被引量:1
  • 6樊兴华.[D].重庆:重庆大学自动化学院博士学位论文,2001. 被引量:3

共引文献2

同被引文献16

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部