摘要
设X是一实Banach空间,且T:X→X是Lipschitz连续的增生算子。在参数αn取几类均匀变化的实序列的条件下,本文提供了:Ishikawa迭代序列收敛速度的估计,且讨论了收敛速度变化的规律。
Let X be an arbitrary real Banach space and T : X → X be a Lipschitz continuous accretive operator. Under the assumption that a,, is two real sequences, the author prives that the Ishikawa iterative sequence converges strongly to the unique solution of the equation x + Tx= f. Moreover, the author provides the convergence rate estimation and discusses the law of the vary of the convergence rate.
出处
《宝鸡文理学院学报(自然科学版)》
CAS
2006年第1期28-31,共4页
Journal of Baoji University of Arts and Sciences(Natural Science Edition)
基金
温州师范学院2003年度科学研究基金立项课题(2003Y20)