摘要
通过对自旋梯可积模型的研究,求出该模型的能量本征值和两体散射矩阵.用可积模型中的坐标Bethe Ansatz方法,首先由薛定谔方程求得能量的本征方程.设定波函数的具体形式,求出本征能量,然后利用能量本征方程和波函数的连续性求出两体散射矩阵.求出单粒子、双粒子和N0个粒子的本征能量,同时求得粒子的两体散射矩阵.自旋梯可积模型的本征能量和两体散射矩阵可通过Bethe Ansatz的方法求得.
The eigenvalue and the two-particle scattering matrix are obtained in a spin-ladder model. They are solved with the coordinate Bethe Ansatz method in integrable. The eigenvalue equation is formed with the Schrodinger equation. Then the eigenvalue is solved as the wave function is given. Finally, the two-particle scattering matrix is calculated by the eigenvalue equation and the continuous condition of the wave function. The eigenvalues of one-particle, two-particle and No-particle are solved, and the two-particle scattering matrix is obtained.
出处
《计算物理》
CSCD
北大核心
2006年第2期189-192,共4页
Chinese Journal of Computational Physics
基金
国家自然科学基金(40375010
60278019资助项目