摘要
引入了由一列Orlicz空间生成的Ba空间(LBMa)的定义,以连续模与带权的连续模为工具,讨论了积分型拟Kantorovic算子在LBMa空间中逼近的正逆定理,得到其等价刻划.
In this paper, the LM^Ba space, which are composed of a sequence of Orlicz spaces,are firstly improved. Then an approximation theorem and an inverse theorem are establised by the Quasi-Kantorovic operators in LM^Ba spaces with a modulus of smoothness and modulus of smoothness with weight. Also an approximational equivalent theorem of the operators is obtained.
出处
《内蒙古师范大学学报(自然科学汉文版)》
CAS
2006年第1期35-38,共4页
Journal of Inner Mongolia Normal University(Natural Science Edition)
基金
内蒙古自然科学基金资助项目(200408020108)