摘要
The difference discrete system of Euler-beam with arbitrary supports was constructed by using the two order central difference formulas. This system is equivalent to the spring-mass-rigidrod model. By using the theory of oscillatory matrix, the signoscillatory property of stiffness matrices of this system was proved, and the necessary and sufficient condition for the system to be positive was obtained completely.
The difference discrete system of Euler-beam with arbitrary supports was constructed by using the two order central difference formulas. This system is equivalent to the spring-mass-rigidrod model. By using the theory of oscillatory matrix, the signoscillatory property of stiffness matrices of this system was proved, and the necessary and sufficient condition for the system to be positive was obtained completely.
基金
Project supported by the National Natural Science Foundation of China (No.60034010)