期刊文献+

SRLW方程的多辛中点格式 被引量:1

Multi-symplectic Algorithm of SRLW Equation
下载PDF
导出
摘要 考虑对称正则长波(SRLW)方程的多辛算法.辛算法是从辛几何观点出发,利用变分原理构造的具有保持原Ham-ilton系统辛几何结构性质的一种算法.本文利用正则变换,构造正则长波方程的多辛方程组,利用多辛算法离散此多辛方程组,得到一个多辛中点格式,要求所得到的多辛格式满足离散形式的多辛守恒律,并分析了它的线性部分的稳定性.用数值实验验证了所构造的格式具有长时间的数值稳定性,它们还能很好地模拟原孤立波的波形. Some multi-symplecitc schemes for SRLW equation were considered in the paper. Symplectic algorithms set forth sympleetic geometry, It makes use of variation principal and it requests that schemes should maintain symplectic geometric traits of the original Hamiltonian system. Multi-sympleetie equation for SRLW PDES through canonical transformations was constructed. Muhisymplectic equations with muhi-symplectic schemes which must preserve discrete multi-sympleetie conservation law was disereted. A multi-symplectic midpoint scheme for SRLW equation was obtained, Experiments showed that muhi-sympleetic scheme had long time behavior and could preserving original solitary wave shape well.
机构地区 华侨大学数学系
出处 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2006年第2期168-170,共3页 Journal of Xiamen University:Natural Science
基金 国务院侨务办公室科研基金(04QZR09)资助
关键词 多辛格式 SRLW方程 Preissman格式 multi-symplectic scheme SRLW equation Preissman scheme
  • 相关文献

参考文献4

  • 1Feng K.On difference schemes and symplectic geometry[C]//Prodceeding of the 1984 Beijing Symposium on Differential Geometry and Differential Equations.Beijing:Science Press,1985:42-58. 被引量:1
  • 2Bridges T J,Reich S.Multi-symplectic integrators:Numerical schemes for Hamiltionian PDEs that conserve symplecticity[J].Physics Letters A,2001,28(4):184-193. 被引量:1
  • 3Seyler C E,Fenstermmacler D C.A symmetry regularized long wave equation[J].Physics Fluids,1984,27(1):4-7. 被引量:1
  • 4Qin M Z,Zhang M Q.Multi-stage symplectic schemes of two kinds of Hamilton system for wave equations[J].Computers Math.Applic.,1990,19(10):51-62. 被引量:1

同被引文献15

  • 1Qin M Z. Symplectic differernce schemes for nonautonomous Hamiltonian systems[J]. Acta Math.Applicatae Sinica, 1996, 12(3): 309-321. 被引量:1
  • 2Bridges T J, Reich S. Numerical methods for Hamiltonian PDEs[J]. J. Phys. A: Math. Gen., 2006, 39: 5287-5320. 被引量:1
  • 3Moore B, Reich S. Backward error analysis for multi-symplectic integration methods[J]. Numerische Mathematik, 2003, 95: 625-652. 被引量:1
  • 4Sun J Q, Qin M Z. Multi-symplectic methods for the coupled 1D nonlinear Schr5dinger system[J]. Comp. Phys. Comm., 2003, 155: 221-235. 被引量:1
  • 5Bridges T J, Reich S. Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity[J]. Physics Letters A, 2001, 284: 184-193. 被引量:1
  • 6Hong J L, Liu H Y, Sun G. The multi-symplecticity of partitioned Runge-Kutta methods for Hamiltonian PDEs[J]. Math. Comp. 2006, 752(53): 167-181. 被引量:1
  • 7Kong L H, Hong J L, Zhang J J. Splitting multisymplectic integrators for Maxwell's equations[J]. J. Comp. Physics., 2010, 229: 4259-4278. 被引量:1
  • 8Shun W Y, Tai L S. New schemes for the coupled nonlinear Schrodinger equation[J]. J. Computer. Mathematics, 2010, 87(4): 775-787. 被引量:1
  • 9Yoshida H. Construction of higher order symplectic integrators[J]. Physics Letters A, 1990, 150(5,6,7): 262-268. 被引量:1
  • 10Qin M J, Zhu W J. Construction of higer order symplectic schemes by composition[J]. Computing, 1992, 47: 309-321. 被引量:1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部