摘要
把Fletcher提出的精确罚函数法推广到西空间.并给出了:1.当Np有最大秩分解Np=BC;2.若Np是n×p矩阵;3.若在2中rank(Np)=r;4.若NHpNp有S个互异的特征值;...等情况下广义Lagrange函数的几种具体形式.
In this article,the exact penalty function method put forward by Fleichev is extended to unitary space,and the author gives:1.When Np have a maximun rank resolving Np=BC;2.When Np is n X p matrix;3.When in 2,rank(Np)=r;4.When NHpNp have number of mutual difference eigenvalues,and some forms of generalized Lagrange functions are presented.
出处
《河北工业大学学报》
CAS
1996年第1期98-102,共5页
Journal of Hebei University of Technology
关键词
精确罚函数
酉空间
最大秩分解
非线性规划
Exact Penalty Function
Unitary Space
Maximum Rank Resolving
Eigenva lue
Generalized Lagrange Function.