摘要
研究了具有参数摄动、外界干扰等不确定因素影响的线性大系统的分散控制问题。考虑到子系统间关联项的重要作用,在子系统间关联项可知的情况下,提出一种新的考虑问题的思路。将已知的关联作用矩阵作为标称系统的参数矩阵,在假设系统不确定性有界且满足一定匹配条件的前提下,给出一种变结构分散控制算法,实现了大系统的全局渐近稳定。该控制律设计简单,并保证了闭环系统较好的动态性能和较强的鲁棒性。
The decentralized control problem is discussed for a class of uncertain linear composite systems with parametric perturbation and exterior disturbance. In consideration of the important function of the interconnected terms, under the condition of the connection item knowable, a new idea for solving such problem was put forward. The connection matrix that will have already know is regarded as the parameter matrix of the nominal system. Based on the assumption of the uncertainty satisfying the bounded and matched conditions, a new robust decentralized variable structure controller is proposed to ensure the global asymptotic stability of the uncertain linear composite systems by means of Lyapunov method. The proposed control law is concise and easy to be realized.
出处
《青岛科技大学学报(自然科学版)》
CAS
2006年第1期62-65,共4页
Journal of Qingdao University of Science and Technology:Natural Science Edition
基金
国家自然科学基金项目(60274009)
教育部博士点基金项目(20020145007)
山东省自然科学基金项目(Y2002G01)
关键词
不确定性
组合系统
分散控制
变结构控制
uncertainty
composite systems
variable structure
decentralized control