期刊文献+

分布式数据流增量聚集 被引量:4

Algorithms for Incremental Aggregation over Distributed Data Stream
下载PDF
导出
摘要 分布式处理是数据流管理中的主流技术,聚集是分布式数据流系统中一种重要的连续查询类型.在分布式数据流环境中,由于需要连续计算聚集值,并且在分布式网络中连续传送聚集值,导致系统的通信开销非常大.为了有效地减少网络中数据流的传输量,提出了一种近似增量聚集算法(approxi-matelyincremental aggregate over distributed data stream,AIADDS).算法增量地计算网络中各个站点的聚集值,只有当聚集值的改变超出给定的阈值才向其他站点传送聚集改变量,这样,可以显著地降低网络的数据传输量.作为算法核心的VSB-Tree能够有效地合并、存储来自孩子站点的聚集值,同时增量地向它的父站点传送聚集改变量.理论分析和实验结果表明,算法是行之有效的. Many stream-oriented systems are inherently geographically distributed, so distributed processing is a very promising route towards a more effective and adaptive data stream processing model. Aggregation over data streams is an important class of continuous operators for distributed processing. Because aggregation queries need be continuously computed and the result need be continuously transmitted, significant communication overhead is incurred for this model. Unfortunately, the continual transmission of a large number of rapid data streams can be impractical or expensive. So a new approximately incremental aggregation technique is proposed with provable guarantees on the approximation error for reducing the overhead. A new structure called the VSB-tree is introduced, which can effectively incorporate and store aggregation of all child stations. The VSB-tree also can incrementally transmit change of aggregation value to father station. The theory analysis and experimental results show the feasibility and effectiveness of the algorithm.
出处 《计算机研究与发展》 EI CSCD 北大核心 2006年第3期509-515,共7页 Journal of Computer Research and Development
基金 江苏省高技术基金项目(BG2004034) 江苏省2004年度研究生创新计划基金项目(xm04-36)~~
关键词 数据流 增量聚集查询 分布式系统 VSB-树 data stream incremental aggregation query distributed system VSB-tree
  • 相关文献

参考文献8

  • 1S, R, Madden, M, J, Franklin, J. M. Hellerstein, et al, TAG:A tiny aggregation service for ad-hoc sensor networks. The 5th Symposium on Operating System Design and Implementation(OSDI 2002), Boston, 2002. 被引量:1
  • 2S. R. Madden, R. Szewczyk, M. J. Franklin, et al. Supporting aggregate queries over ad-hoe wireless sensor networks. In: T.Kindberg, ed. Proc. Workshop on Mobile Computing and Systems Applications. Los Alamitos: IEEE Computer Soeeity Press. 2002. 49-58. 被引量:1
  • 3Alin Dobra, Minos Garofalakis, Johannes Gehrke, et al.Processing complex aggregate queries over data streams. The 2002 ACM SIGMOD Int'l Conf, Management of Data, Madison,Wisconsin, 2002. 被引量:1
  • 4A. C. Gilbert, Y. Kotidis, S. M. Muthukrishnan, et al.Surfing wavelets on streams: One-pass summaries for approximate aggregate queries. VLDB, Roma, 2001. 被引量:1
  • 5张冬冬,李建中,王伟平.时间序列数据流上历史数据的聚集算法..第20届全国数据库学术会议.长沙,2003.. 被引量:1
  • 6Jun Yang, Jennifer Widom. Incremental computation and maintenance of temporal aggregates. The 17th Int'l Conf, Data Engineering, Heidelberg, 2001. 被引量:1
  • 7D. Zhang, D, Gunopulos, V. J, Tsotras, et al, Temporal aggregation over data ,streams using multiple granularities. The 8thConf. Extending Database Technology (EDBT 2002), Prague,2002. 被引量:1
  • 8张冬冬,李建中,王伟平,郭龙江.分布式复式数据流的处理[J].计算机研究与发展,2004,41(10):1780-1785. 被引量:4

二级参考文献9

  • 1B Babcock, S Babu, M Datar. Model and issues in data stream systems. The 21st ACM SIGACT-SIGMOD-SIGART Symp on Principles of Database Systems, Madison, Wisconsin, USA, 2002 被引量:1
  • 2L Golab, M T Ozsu. Issues in data stream management.SIGMOD Record, 2003, 32(2): 5~14 被引量:1
  • 3C Olston, J Jiang, J Widom. Adaptive filters for continuous queries over distributed data streams. The 2003 ACM SIGMOD Int'l Conf on Management of Data, San Diego, California, USA,2003 被引量:1
  • 4M Cherniack, H Balakrishnan, M Balazinska. Scalable distributed stream processing. The 1st Biennial Conf on Innovative Data Systems Research, Asilomar, CA, USA, 2003 被引量:1
  • 5A Araru, S Babu, J Widom. An abstract semantics and concrete language for continuous queries over streams and relations.http://dbpubs. stanford. edu/pub/2002-57, 2002 被引量:1
  • 6Y Yao, J Gehrke. Query processing for sensor networks. The 1st Biennial Conf on Innovative Data Systems Research, Asilomar,CA, USA, 2003 被引量:1
  • 7J Kang, J F Naughton, S D Viglas. Evaluating window joins over unbounded streams. The 19th Int' l Conf on Data Engineering,Bangalore, India, 2003 被引量:1
  • 8S Guha, N Koudas. Approximating a data stream for querying and estimation: Algorithms and performance evaluation. The 18th Int'l Conf on Data Engineering, San Jose, CA, 2002 被引量:1
  • 9M Arlitt, T Jin. 1998 world cup Web site access logs. http://www. acm. org/sigcomm/ITA, 1998 被引量:1

共引文献3

同被引文献37

  • 1王永利,徐宏炳,董逸生,钱江波,刘学军.基于低阶近似的多维数据流相关性分析[J].电子学报,2006,34(2):293-300. 被引量:12
  • 2王湛,游静,赵颜利,刘凤玉,张宏.基于访问关系的进程重启相关性判定[J].计算机科学,2006,33(9):274-277. 被引量:7
  • 3李金良,王文国,何裕友.一种基于历史信任数据的DDOS防御模型[J].计算机技术与发展,2007,17(7):160-162. 被引量:2
  • 4MIRKOVIC JELENA .Attacking DDoS at the source[A]. Proceedings of the 10th IEEE International Conference on Network Protocols [C]. Paris, France, 2002.366-369 被引量:1
  • 5FERGUSON P, SENIE D. Network Ingress Filtering: Defeating Denial of Service Attacks which Employ IP Source Address Spoofing[R] Internet Best Current Practice, RFC 2827, May 2000. 被引量:1
  • 6WALFISH M, VUTUKURU M. DDoS defense by offense [A], SIGCOM'06[C]. 2006.1635-1639. 被引量:1
  • 7PENG T, LECKIE R, RAMAMOHANARAO T. Survey of network-based defense mechanisms countering the DoS and DDoS problems[J]. ACM Computing Surveys, 2007,39(1):321-342. 被引量:1
  • 8JIN C H, WANG K SHIN. Hop-count filtering: an effective defense against spoofed DDoS traffic[A]. Proceedings of the 10th ACM Conference on Computer and Communications Security[C]. Washington, D C, USA, 2003.126-137 被引量:1
  • 9TUPAKULA U, VARADHARAJAN V. Analysis of Trace-Back Technique[R]. 2006. 被引量:1
  • 10ALLMAN M, BLANTON E, PAXSON V. An architecture for developing behavioral history[A]. Proceedings of SRUTI USENIX Association[C]. 2005.45-51. 被引量:1

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部